Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Fatal and Severe Injuries in Rear Impact; Seat Stiffness in Recent Field Accident Data

2008-04-14
2008-01-0193
A decade ago, James, et.al. published a detailed study of the available NASS data on severe rear impacts, with findings that “… stiffened or rigid seat backs will not substantially mitigate severe and fatal injuries in rear impacts.” No field accident study has since been advanced which refutes this finding. Advocates of rigidized seat backs often point to specific cases of severe rear impacts in which MAIS 4+ injuries are associated with seat back deformation, coupled with arguments supporting stiffer seatback designs. These arguments are generally based upon laboratory experiments with dummies in normal seating positions. Recent field accident data shows that generally, in collisions where the majority of societal harm is created, yielding seats continue to provide benefits, including those associated with whiplash associated disorders (WAD).
Technical Paper

Roadway Asphalt Damage Force Analysis for Accident Reconstruction

2008-04-14
2008-01-0173
In reconstruction of on-roadway vehicle accidents, tire-road surface friction coefficient, mu (μ), can be estimated using a variety of available data. Common ranges and values for μ are used in calculations forming the foundation for most accident reconstruction techniques. When the roadway surface is gouged or disrupted by vehicle components, accounting of dissipated energy can be successful where supporting force data exists. Roadway gouge forces can vary widely depending upon such factors as road surface construction, surface temperature, and the velocity and geometry of the gouging mechanism. Such dissipated energy can be significant in accounting of total reconstruction energy. This paper presents experiments aimed at quantifying gouge force by controlled pavement gouging tests.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine

1981-10-01
811016
As part of a continuing study of thoracic injury resulting from blunt frontal loading, the interrelationship of velocity and chest compression was investigated in a series of animal experiments. Anesthetized male swine were suspended in their natural posture and subjected to midsternal, ventrodorsad impact. Twelve animals were struck at a velocity of 14.5 ± 0.9 m/s and experienced a controlled thoracic compression of either 15, 19, or 24%. Six others were impacted at 9.7 ± 1.3 m/s with a greater mean compression of 27%. For the 14.5 m/s exposures the severity of trauma increased with increasing compression, ranging from minor to fatal. Injuries included skeletal fractures, pulmonary contusions, and cardiovascular ruptures leading to tamponade and hemothorax. Serious cardiac arrhythmias also occurred, including one case of lethal ventricular fibrillation. The 9.7 m/s exposures produced mainly pulmonary contusion, ranging in severity from moderate to critical.
Technical Paper

Sensitivity of Porcine Thoracic Responses and Injuries to Various Frontal and A Lateral Impact Site

1978-02-01
780890
Classical blunt thoracic impacts have involved midsternal anteroposterior loadings to an upright-positioned subject. Data on the sensitivity of human cadaver and/or animal model biomechanical and injury responses to blunt loadings at different sternal locations is needed to evaluate the efficacy of current injury-potential guidelines for nonsite-specific frontal impacts. In addition, the biomechanics and injury mechanisms associated with lateral impacts constitute a subject of increasing consideration for occupant protection. Twelve anesthetized pigs were subjected to various blunt frontal or a right-side impact to assess biomechanical and injury response differences in a living animal model.
Technical Paper

Design, Development and Testing of a Load-Sensing Crash Dummy Face

1984-02-01
840397
This project covers one facet of a program to develop a mechanical model for characterizing the time history of local forces on the zygomatic, maxillary and mandible regions of the human face during a frontal collision. Two mechanical devices to measure the forces on crash dummies during testing were designed, constructed and tested. The devices employed cantilever beams equipped with strain gauges. Both devices were subjected to a series of drop tests onto various materials. Time histories were compared to those obtained from cadaver experiments. While the data obtained from this testing appears to be similar to the cadaver data, further improvements and modifications will make the model much more useful.
Technical Paper

Comparative Thoracic Impact Response of Living and Sacrificed Porcine Siblings

1977-02-01
770930
Thoracic impact response and injuries of living and postmortem porcine siblings were investigated to quantify comparative differences. Thirteen male animals, averaging 61.4 kg, from five different porcine litters comprised the two animal samples. Porcine brothers were subjected to similar impact exposures for which at least one brother was tested live, anesthetized and another dead, post rigor with vascular repressurization. Statistically significant differences in biomechanical responses and injuries were observed between live and postmortem siblings. On the average the anesthetized live animals demonstrated a greater thoracic compliance, as measured by increased normalized total deflections (21% Hi), and reduced overall injuries (AIS 14% Lo and rib fractures 26% Lo) at lower peak force levels (13% Lo) than did the postmortem subjects. However, individual comparisons of “match-tested” siblings demonstrated very similar responses in some cases.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

A Load Sensing Face Form for Automotive Collision Crash Dummy Instrumentation

1986-02-24
860197
This paper summarizes the development of an Instrumented faceform which can record time histories of impact-related pressures at fifty-two locations over the entire face of a Hybrid 2 crash dummy skull. Pressures are measured by using piezo-electric, thin-plastic films; a high-speed, multiplex data acquisition system; signal conditioning; a software-controlled computerized data reduction and recording scheme; and a submergence calibration technique. The construction of the modified dummy face and the calibration gear are discussed. Examples of preliminary laboratory impact test results are presented. Theory and techniques relating to signal processing software, microprocessor controlled random-access-memory data-retrieval system and system calibration are also discussed. It is hoped that this tool, now undergoing final development and verification testing, will find extensive use in the evaluation and safety-related design of vehicle interiors and occupant restraints.
Technical Paper

Facial Impact Response — A Comparison of the Hybrid III Dummy and Human Cadaver

1988-10-01
881719
Results indicate the need for a redesigned Hybrid III face capable of accurate force and acceleration measurements. New instrumentation and methods for facial fracture detection were developed, including the application of acoustic emissions. Force/ deflection information for the human cadaver head and the Hybrid III ATD were generated for the frontal, zygomatic, and maxillary regions.
Technical Paper

Crash Protection in Near-Side Impact - Advantages of a Supplemental Inflatable Restraint

1989-02-01
890602
Collision Safety Engineering, Inc. (CSE), has developed a test prototype system to protect occupants during lateral impacts. It is an inflatable system that offers the potential of improved protection from thoracic, abdominal and pelvic injury by moving an impact pad into the occupant early in the crash. Further, it shows promise for head and neck protection by deployment of a headbag that covers the major target areas of B-pillar, window space, and roofrail before head impact. Preliminary static and full-scale crash tests suggest the possibility of injury reduction in many real-world crashes, although much development work remains before the production viability of this concept can be established. A description of the system and its preliminary testing is preceded by an overview of side impact injury and comments on the recent NHTSA Rule Making notices dealing with side-impact injury.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine II

1986-10-27
861881
Results of two studies concerning the interrelationship of velocity, compression and injury in blunt thoracic impact to anesthetized swine have been combined to provide a data base of forty-one experiments. impact velocity ranged from ∼8-30 m/s and applied normalized chest compression from ∼0.10-0.30. Experimental subjects were suspended in the spine-horizontal position and loaded midsternally through a 150 mm diameter, flat rigid disk on an impacting mass propelled upward from below. Measurements and computations included sternal and spinal accelerations, intracardiovascular overpressures, physiological responses, injury, as assessed by necropsy, and different forms of the velocity and compression exposure severity parameters. The significance of both compression and velocity as parameters of impact exposure severity is clearly demonstrated. Qualitatively, exacerbation of injury was seen when either variable was increased with the other held constant.
Technical Paper

Force/Deflection and Fracture Characteristics of the Temporo-parietal Region of the Human Head

1991-10-01
912907
Impact tests were conducted on thirty-one unembalmed human cadaver heads. Impacts were delivered to the temporo-parietal region of fixed cadavers by two, different sized, flat-rigid impactors. Yield fracture force and stiffness data for this region of the head are presented. Impactor surfaces consisted of a 5 cm2 circular plate and a 52 cm2 rectangular plate. The average stiffness value observed using the circular impactor was 1800 N/mm, with an average bone-fracture-force level of 5000 N. Skull stiffness for the rectangular impactor was 4200 N/mm, and the average fracture-force level was 12,500 N.
X