Refine Your Search

Topic

Search Results

Technical Paper

Postural Influences on Thoracic Impact

1979-02-01
791028
The influence of body posture, and inherently support, on thoracic impact response was investigated in an animal model. Anesthetized and postmortem domestic swine were exposed to blunt, midsternal loading while supported in their natural quadrupedal posture, and the results were compared with previously reported data from similar tests involving an upright body orientation. Twelve male animals were tested, six while anesthetized and six postmortem. Each animal was impacted once by a 21 kg rigid mass with a flat contact interface moving at a nominal velocity of either 8 or 10 m/s. Measured mechanical responses included applied load, sternal and spinal accelerations, thoracic compression and aortic overpressure. Injury response was assessed from a thoracico-abdominal necropsy. In addition, ECG traces were recorded pre and postimpact to monitor electro-physiological response.
Technical Paper

A Perspective on Automobile Crash Fires

1985-02-25
850092
The relatively rare occurrence of injury or fatality in fuel-fed fires has received considerable attention in automotive safety rulemaking and products liability litigation. The literature related to fatalities associated with fire is confirmed by recent FARS data, and there are no reliable field data which confirm a need for further injury-reducing effect related to FMVSS 301. NHTSA has acknowledged this by removing crash fire rulemaking from its priorities plan. The police-reported crash fire data now available must be supplemented with in-depth investigation by trained teams before informed judgements can be made regarding further safety improvements with respect to crash fire injury.
Technical Paper

Inaccuracies in the CRASHS Program

1985-02-25
850255
The CRASH3 computer program, a well known and useful tool in accident reconstruction, is shown to be innaccurate by comparison with car-to-car crash test data. Claims for accuracy of about 10 percent cannot be validated. Both the impact model and the damage only model yield results which are in error. Cases involving error well in excess of 20 percent are demonstrated. These inaccuracies are due primarily to the omission of terms in the formulation of the energy equation and to the sensitivity of the solution to the input estimate of principle-direction-of-force.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

A Load Sensing Face Form for Automotive Collision Crash Dummy Instrumentation

1986-02-24
860197
This paper summarizes the development of an Instrumented faceform which can record time histories of impact-related pressures at fifty-two locations over the entire face of a Hybrid 2 crash dummy skull. Pressures are measured by using piezo-electric, thin-plastic films; a high-speed, multiplex data acquisition system; signal conditioning; a software-controlled computerized data reduction and recording scheme; and a submergence calibration technique. The construction of the modified dummy face and the calibration gear are discussed. Examples of preliminary laboratory impact test results are presented. Theory and techniques relating to signal processing software, microprocessor controlled random-access-memory data-retrieval system and system calibration are also discussed. It is hoped that this tool, now undergoing final development and verification testing, will find extensive use in the evaluation and safety-related design of vehicle interiors and occupant restraints.
Technical Paper

An Inexpensive Automobile Crash Recorder

1974-02-01
740567
One of the greatest challenges faced in the design of realistic occupant protection systems is an accurate statistical model of what is really needed. The paucity of data is this realm hinders designers of standards alike. Ideally, a model of crash statistics would correlate, for significant accident modes, injury level (as measured by AMA Abreviated Injury Scale “AIS”) with some adequate measure of crash intensity. Having this information, not only could the required level of safety design be ascertained, but also the justifiable economic expenditure could be estimated. This paper treats the statistical basis for deployment of a data retrival system. It provides a basis for estimates of the amount of data required, the number of vehicles to be instrumented, the crash severity trigger levels, and the economics of recorder installation, for various levels of injury and fatality.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine

1981-10-01
811016
As part of a continuing study of thoracic injury resulting from blunt frontal loading, the interrelationship of velocity and chest compression was investigated in a series of animal experiments. Anesthetized male swine were suspended in their natural posture and subjected to midsternal, ventrodorsad impact. Twelve animals were struck at a velocity of 14.5 ± 0.9 m/s and experienced a controlled thoracic compression of either 15, 19, or 24%. Six others were impacted at 9.7 ± 1.3 m/s with a greater mean compression of 27%. For the 14.5 m/s exposures the severity of trauma increased with increasing compression, ranging from minor to fatal. Injuries included skeletal fractures, pulmonary contusions, and cardiovascular ruptures leading to tamponade and hemothorax. Serious cardiac arrhythmias also occurred, including one case of lethal ventricular fibrillation. The 9.7 m/s exposures produced mainly pulmonary contusion, ranging in severity from moderate to critical.
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

Optimum Restraint Parameters for Bounded Occupant Motion in Decelerating Vehicles

1970-02-01
700450
The problem of occupant impact severity reduction by effective use of available space was studied using a two-degree-of-freedom linear mathematical model implemented on a digital computer. An optimum-search method was employed to find the best values of stiffness and damping terms for linear lap and shoulder “belts” corresponding to specific vehicle pulseforms and geometry at speeds 10 to 60 mph. System performance was evaluated on the basis of a severity index comparing occupant deceleration data, and upon penalties imposed for occupant contact with vehicle interior structures. Comparison to biomechanical data indicates that the optimal linear system for 60 mph could produce serious injuries. Comparison to theoretical optimum values indicates considerable room for improvement, using active or nonlinear passive systems.
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

Comparative Thoracic Impact Response of Living and Sacrificed Porcine Siblings

1977-02-01
770930
Thoracic impact response and injuries of living and postmortem porcine siblings were investigated to quantify comparative differences. Thirteen male animals, averaging 61.4 kg, from five different porcine litters comprised the two animal samples. Porcine brothers were subjected to similar impact exposures for which at least one brother was tested live, anesthetized and another dead, post rigor with vascular repressurization. Statistically significant differences in biomechanical responses and injuries were observed between live and postmortem siblings. On the average the anesthetized live animals demonstrated a greater thoracic compliance, as measured by increased normalized total deflections (21% Hi), and reduced overall injuries (AIS 14% Lo and rib fractures 26% Lo) at lower peak force levels (13% Lo) than did the postmortem subjects. However, individual comparisons of “match-tested” siblings demonstrated very similar responses in some cases.
Technical Paper

Sensitivity of Porcine Thoracic Responses and Injuries to Various Frontal and A Lateral Impact Site

1978-02-01
780890
Classical blunt thoracic impacts have involved midsternal anteroposterior loadings to an upright-positioned subject. Data on the sensitivity of human cadaver and/or animal model biomechanical and injury responses to blunt loadings at different sternal locations is needed to evaluate the efficacy of current injury-potential guidelines for nonsite-specific frontal impacts. In addition, the biomechanics and injury mechanisms associated with lateral impacts constitute a subject of increasing consideration for occupant protection. Twelve anesthetized pigs were subjected to various blunt frontal or a right-side impact to assess biomechanical and injury response differences in a living animal model.
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
Technical Paper

Injury and Intrusion in Side Impacts and Rollovers

1984-02-01
840403
The relationship between occupant crash injury and occupant compartment intrusion is seen in the perspectives of the velocity-time analysis and the NCSS statistical data for two important accident injury modes, lateral and rollover collisions. Restraint system use, interior impacts, and vehicle design features are considered. Side impact intrusion is analyzed from physical principles and further demonstrated by reference to staged collisions and NCSS data. Recent publications regarding findings of the NCSS data for rollovers, as well as the NCSS data itself, are reviewed as a background for kinematic findings regarding occupant injury in rollovers with roof crush.
Technical Paper

Design, Development and Testing of a Load-Sensing Crash Dummy Face

1984-02-01
840397
This project covers one facet of a program to develop a mechanical model for characterizing the time history of local forces on the zygomatic, maxillary and mandible regions of the human face during a frontal collision. Two mechanical devices to measure the forces on crash dummies during testing were designed, constructed and tested. The devices employed cantilever beams equipped with strain gauges. Both devices were subjected to a series of drop tests onto various materials. Time histories were compared to those obtained from cadaver experiments. While the data obtained from this testing appears to be similar to the cadaver data, further improvements and modifications will make the model much more useful.
Technical Paper

A Repeated-Crash Test Technique for Assessment of Structural Impact Behavior

1986-02-24
860208
An economical alternative technique is presented for obtaining vehicle frontal crush characteristics from a series of repeated low speed barrier crashes. Results were analyzed using a technique of linear correlation of residual crush depth with a defined crush energy parameter. The data compared closely with crashes reported in the literature, and suggested that the structure exhibits only a slight strain rate sensitivity. Crush energy is shown to correlate well with dynamic crush depth. Relations among dynamic and residual crush and recovery distance are reported, Velocity restitution is shown to be about constant at 15% over the impact velocity range employed. A force-deflection relation based on the offset force linear harmonic oscillator theory is suggested, shown to agree quite well with data. Repeated crash testing can be an effective method to obtain information needed for development of analytical and predictive tools useful in design and reconstruction.
Technical Paper

The Accuracy and Usefulness of SMAC

1978-02-01
780902
Computer-aided crash reconstruction has become common-place in the automotive safety profession, primarily because of widespread distribution of software under public auspices. The SMAC (Simulation Model of Automobile Collisions) program, for instance, is available through NHTSA at nominal cost. This paper exhibits some of the limitations and strengths of accident reconstruction simulations, with illustrations and emphasis drawn from the SMAC program. In particular, some coarse physical approximations used and some coding errors incurred in the formulation of SMAC are discussed, together with their respective effects on the accuracy of prediction. Revisions of the basic SMAC coding have been developed at BYU to overcome these shortcomings. Results of uncorrected and revised SMAC simulations are demonstrated by comparison with the physical theory. Comments regarding a new SMAC program just completed under U.S. Government contract are presented where appropriate.
Technical Paper

Force/Deflection and Fracture Characteristics of the Temporo-parietal Region of the Human Head

1991-10-01
912907
Impact tests were conducted on thirty-one unembalmed human cadaver heads. Impacts were delivered to the temporo-parietal region of fixed cadavers by two, different sized, flat-rigid impactors. Yield fracture force and stiffness data for this region of the head are presented. Impactor surfaces consisted of a 5 cm2 circular plate and a 52 cm2 rectangular plate. The average stiffness value observed using the circular impactor was 1800 N/mm, with an average bone-fracture-force level of 5000 N. Skull stiffness for the rectangular impactor was 4200 N/mm, and the average fracture-force level was 12,500 N.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
X