Refine Your Search

Topic

Search Results

Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

Force/Deflection and Fracture Characteristics of the Temporo-parietal Region of the Human Head

1991-10-01
912907
Impact tests were conducted on thirty-one unembalmed human cadaver heads. Impacts were delivered to the temporo-parietal region of fixed cadavers by two, different sized, flat-rigid impactors. Yield fracture force and stiffness data for this region of the head are presented. Impactor surfaces consisted of a 5 cm2 circular plate and a 52 cm2 rectangular plate. The average stiffness value observed using the circular impactor was 1800 N/mm, with an average bone-fracture-force level of 5000 N. Skull stiffness for the rectangular impactor was 4200 N/mm, and the average fracture-force level was 12,500 N.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Application of Kinematic Concepts to Side Impact Injury Analysis

1990-02-01
900375
An understanding of fundamental kinematic relationships among the several deforming surfaces of side-impacting bullet and target vehicle, occupant protection system and occupant is fundamental to rational design of crash injury counter-measures. Unfortunately, such understanding is not easy to achieve. Side impacts address the full range of bodily contacts and injuries in a way that challenges analysis. Each bodily area and organ requires individual consideration for adequate injury protection. This paper presents a simplified graphical analysis of occupant kinematics and injury exposure applied specifically to the NHTSA-proposed crabbed moving deformable barrier (MDB) compartment impact, as described in NHTSA's Notice of Proposed Rulemaking (NPRM) for Federal Motor Vehicle Safety Standard (FMVSS) 214, issued in January of 1988 [NHTSA 1988 (1)*]. Projections are offered regarding the potential of thoracic injury counter-measures.
Technical Paper

Pulse Shape and Duration in Frontal Crashes

2007-04-16
2007-01-0724
Understanding of events within the history of a crash, and estimation of the severity of occupant interior collisions depend upon an accurate assessment of crash duration. Since this time duration is not measured independently in most crash test reports, it must usually be inferred from interpretations of acceleration data or from displacement data in high-speed film analysis. The significant physical effects related to the crash pulse are often essential in reconstruction analyses wherein the estimation of occupant interior “second collision” or airbag sensing issues are at issue. A simple relation is presented and examined which allows approximation of the approach phase and separation phase kinematics, including restitution and pulse width. Building upon previous work, this relation allows straightforward interpretation of test data from related publicly available test reports.
Technical Paper

Load Path Considerations for Side Crash Compatibility

2007-04-16
2007-01-1176
Heavier, larger pickups and SUVs are bound to encounter lighter, smaller passenger vehicles in many future accidents. As the fleet has evolved to include more and more SUVs, their frontal structures are often indistinguishable from pickup fronts. Improvements in geometric compatibility features are crucial to further injury prevention progress in side impact. In corner crashes where modern bullet passenger car (PC) bumpers make appropriate geometrical overlap with target PC rocker panels, concentrated loads sometimes disrupt foam and plastic bumper corners, creating aggressive edges. In situations where sliding occurs along the structural interface, these sharp edges may slice through doors, panels and pillars. End treatments for such bumper beams should be designed to reduce this aggressive potential.
Technical Paper

Fatal and Severe Injuries in Rear Impact; Seat Stiffness in Recent Field Accident Data

2008-04-14
2008-01-0193
A decade ago, James, et.al. published a detailed study of the available NASS data on severe rear impacts, with findings that “… stiffened or rigid seat backs will not substantially mitigate severe and fatal injuries in rear impacts.” No field accident study has since been advanced which refutes this finding. Advocates of rigidized seat backs often point to specific cases of severe rear impacts in which MAIS 4+ injuries are associated with seat back deformation, coupled with arguments supporting stiffer seatback designs. These arguments are generally based upon laboratory experiments with dummies in normal seating positions. Recent field accident data shows that generally, in collisions where the majority of societal harm is created, yielding seats continue to provide benefits, including those associated with whiplash associated disorders (WAD).
Technical Paper

Derivation of Vehicle-to-Vehicle Frontal Crash Pulse Estimates from Barrier Crash Data

2008-04-14
2008-01-0174
The BSAN crash pulse model has been shown to provide useful information for restraint sensing evaluation and for structural force-displacement studies in flat fixed rigid barrier (FFRB) crashes. This paper demonstrates a procedure by which the model may be extended for use with central and offset vehicle to vehicle (VTV) crashes through appropriate combinations of vehicle parameters.
Technical Paper

Roadway Asphalt Damage Force Analysis for Accident Reconstruction

2008-04-14
2008-01-0173
In reconstruction of on-roadway vehicle accidents, tire-road surface friction coefficient, mu (μ), can be estimated using a variety of available data. Common ranges and values for μ are used in calculations forming the foundation for most accident reconstruction techniques. When the roadway surface is gouged or disrupted by vehicle components, accounting of dissipated energy can be successful where supporting force data exists. Roadway gouge forces can vary widely depending upon such factors as road surface construction, surface temperature, and the velocity and geometry of the gouging mechanism. Such dissipated energy can be significant in accounting of total reconstruction energy. This paper presents experiments aimed at quantifying gouge force by controlled pavement gouging tests.
Technical Paper

Estimating Vehicle Deformation Energy for Vehicles Struck in the Side

1998-02-23
980215
The reconstruction of accidental impacts to the side structure of one or more accident vehicles often incorporates estimates of the energy absorbed by laterally struck vehicle(s). Such estimates generally involve considerably more issues than does the assessment of frontal or rear impact deformation energy. The sides of vehicles are, compared to the usual striking object, relatively broad, and they contain zones of varying stiffness supported by collapsible box structures. Side stiffnesses can vary widely, depending upon impact geometry. Most side impact crash tests that can readily be used to make estimates of side stiffness have been conducted by the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine

1981-10-01
811016
As part of a continuing study of thoracic injury resulting from blunt frontal loading, the interrelationship of velocity and chest compression was investigated in a series of animal experiments. Anesthetized male swine were suspended in their natural posture and subjected to midsternal, ventrodorsad impact. Twelve animals were struck at a velocity of 14.5 ± 0.9 m/s and experienced a controlled thoracic compression of either 15, 19, or 24%. Six others were impacted at 9.7 ± 1.3 m/s with a greater mean compression of 27%. For the 14.5 m/s exposures the severity of trauma increased with increasing compression, ranging from minor to fatal. Injuries included skeletal fractures, pulmonary contusions, and cardiovascular ruptures leading to tamponade and hemothorax. Serious cardiac arrhythmias also occurred, including one case of lethal ventricular fibrillation. The 9.7 m/s exposures produced mainly pulmonary contusion, ranging in severity from moderate to critical.
Technical Paper

An Inexpensive Automobile Crash Recorder

1974-02-01
740567
One of the greatest challenges faced in the design of realistic occupant protection systems is an accurate statistical model of what is really needed. The paucity of data is this realm hinders designers of standards alike. Ideally, a model of crash statistics would correlate, for significant accident modes, injury level (as measured by AMA Abreviated Injury Scale “AIS”) with some adequate measure of crash intensity. Having this information, not only could the required level of safety design be ascertained, but also the justifiable economic expenditure could be estimated. This paper treats the statistical basis for deployment of a data retrival system. It provides a basis for estimates of the amount of data required, the number of vehicles to be instrumented, the crash severity trigger levels, and the economics of recorder installation, for various levels of injury and fatality.
Technical Paper

Postural Influences on Thoracic Impact

1979-02-01
791028
The influence of body posture, and inherently support, on thoracic impact response was investigated in an animal model. Anesthetized and postmortem domestic swine were exposed to blunt, midsternal loading while supported in their natural quadrupedal posture, and the results were compared with previously reported data from similar tests involving an upright body orientation. Twelve male animals were tested, six while anesthetized and six postmortem. Each animal was impacted once by a 21 kg rigid mass with a flat contact interface moving at a nominal velocity of either 8 or 10 m/s. Measured mechanical responses included applied load, sternal and spinal accelerations, thoracic compression and aortic overpressure. Injury response was assessed from a thoracico-abdominal necropsy. In addition, ECG traces were recorded pre and postimpact to monitor electro-physiological response.
Technical Paper

The Accuracy and Usefulness of SMAC

1978-02-01
780902
Computer-aided crash reconstruction has become common-place in the automotive safety profession, primarily because of widespread distribution of software under public auspices. The SMAC (Simulation Model of Automobile Collisions) program, for instance, is available through NHTSA at nominal cost. This paper exhibits some of the limitations and strengths of accident reconstruction simulations, with illustrations and emphasis drawn from the SMAC program. In particular, some coarse physical approximations used and some coding errors incurred in the formulation of SMAC are discussed, together with their respective effects on the accuracy of prediction. Revisions of the basic SMAC coding have been developed at BYU to overcome these shortcomings. Results of uncorrected and revised SMAC simulations are demonstrated by comparison with the physical theory. Comments regarding a new SMAC program just completed under U.S. Government contract are presented where appropriate.
Technical Paper

Sensitivity of Porcine Thoracic Responses and Injuries to Various Frontal and A Lateral Impact Site

1978-02-01
780890
Classical blunt thoracic impacts have involved midsternal anteroposterior loadings to an upright-positioned subject. Data on the sensitivity of human cadaver and/or animal model biomechanical and injury responses to blunt loadings at different sternal locations is needed to evaluate the efficacy of current injury-potential guidelines for nonsite-specific frontal impacts. In addition, the biomechanics and injury mechanisms associated with lateral impacts constitute a subject of increasing consideration for occupant protection. Twelve anesthetized pigs were subjected to various blunt frontal or a right-side impact to assess biomechanical and injury response differences in a living animal model.
Technical Paper

Optimum Restraint Parameters for Bounded Occupant Motion in Decelerating Vehicles

1970-02-01
700450
The problem of occupant impact severity reduction by effective use of available space was studied using a two-degree-of-freedom linear mathematical model implemented on a digital computer. An optimum-search method was employed to find the best values of stiffness and damping terms for linear lap and shoulder “belts” corresponding to specific vehicle pulseforms and geometry at speeds 10 to 60 mph. System performance was evaluated on the basis of a severity index comparing occupant deceleration data, and upon penalties imposed for occupant contact with vehicle interior structures. Comparison to biomechanical data indicates that the optimal linear system for 60 mph could produce serious injuries. Comparison to theoretical optimum values indicates considerable room for improvement, using active or nonlinear passive systems.
Technical Paper

Improvements to the SMAC Program

1983-02-01
830610
The Simulation Model of Automobile Collisions (SMAC) computer program has seen more than a decade of use under NHTSA auspices. Although SMAC has proven itself to be a useful investigative tool, the program has several shortcomings which either have been addressed by the authors or need to be addressed by further work. This paper presents the results of our ongoing work to improve SMAC and our recommendations for further work. Those model features discussed herein which either have been or need to be revised consist of (1) the calculation of crush forces when penetration is deep (2) the representation of the vehicles' crush pressure vs deflection relationship and (3) the distribution of tire normal forces in reaction to pitch and roll. An input interfacing program called SMACED has been written and is discribed. This editing program greatly simplifies the use of SMAC and will be found particularly useful for the inexperienced or infrequent SMAC user.
X