Refine Your Search

Topic

Search Results

Technical Paper

Combustion Modeling of Conventional Diesel-type and HCCI-type Diesel Combustion with Large Eddy Simulations

2008-04-14
2008-01-0958
A general combustion model, in the context of large eddy simulations, was developed to simulate the full range of combustion in conventional diesel-type and HCCI-type diesels. The combustion model consisted of a Chemkin sub-model and an Extended Flamelet Time Scale (EFTS) sub-model. Specifically, Chemkin was used to simulate auto-ignition process. In the post-ignition phase, the combustion model was switched to EFTS. In the EFTS sub-model, combustion was assumed to be a combination of two elementary combustion modes: homogeneous combustion and flamelet combustion. The combustion index acted as a weighting factor blending the contributions from these two modes. The Chemkin sub-model neglected the subgrid scale turbulence-chemistry interactions whereas the EFTS model took them into account through a presumed PDF approach. The model was used to simulate an early injection mode of a Cummins DI diesel engine and a mode of a Caterpillar DI diesel engine.
Technical Paper

Model-Based Feed-Forward Control of Diesel HCCI Engine Transients

2009-04-20
2009-01-1133
System level modeling was used to develop a suitable control strategy for Diesel Homogeneous Charge Compression Ignition (HCCI) transient operation. Intake temperature and pressure, engine speed, engine load, cylinder wall temperature, exhaust gas recirculation, etc. all significantly affect combustion phasing generating a scenario where simple ECU mapping techniques prove inadequate. Two-stage fuels such as diesel fuel pose additional challenges for accurate combustion control. Low-temperature cool-flame chemical heat release can significantly alter the thermodynamic state of the trapped gaseous mixture and hence combustion phasing. Operator and environmentally induced transients can rapidly alter combustion phasing parameters suggesting a need for model-based control. A model-based control strategy featuring the identified essential physics has been developed to control diesel HCCI combustion phasing through transient operation.
Technical Paper

Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine

2009-04-20
2009-01-0714
Two advanced combustion models have been validated with the KIVA-3V Release 2 code in the context of two-stage combustion in a heavy duty diesel engine. The first model uses CHEMKIN to directly integrate chemistry in each computational cell. The second model accounts for flame propagation with the G-equation, and CHEMKIN predicts autoignition and handles chemistry ahead of and behind the flame front. A Damköhler number criterion was used in flame containing cells to characterize the local mixing status and determine whether heat release and species change should be a result of flame propagation or volumetric heat release. The purpose of this criterion is to make use of physical and chemical time scales to determine the most appropriate chemistry model, depending on the mixture composition and thermodynamic properties of the gas in each computational cell.
Technical Paper

Optimization of Diesel Engine Operating Parameters Using Neural Networks

2003-10-27
2003-01-3228
Neural networks are useful tools for optimization studies since they are very fast, so that while capturing the accuracy of multi-dimensional CFD calculations or experimental data, they can be run numerous times as required by many optimization techniques. This paper describes how a set of neural networks trained on a multi-dimensional CFD code to predict pressure, temperature, heat flux, torque and emissions, have been used by a genetic algorithm in combination with a hill-climbing type algorithm to optimize operating parameters of a diesel engine over the entire speed-torque map of the engine. The optimized parameters are mass of fuel injected per cycle, shape of the injection profile for dual split injection, start of injection, EGR level and boost pressure. These have been optimized for minimum emissions. Another set of neural networks have been trained to predict the optimized parameters, based on the speed-torque point of the engine.
Technical Paper

Improvement of Neural Network Accuracy for Engine Simulations

2003-10-27
2003-01-3227
Neural networks have been used for engine computations in the recent past. One reason for using neural networks is to capture the accuracy of multi-dimensional CFD calculations or experimental data while saving computational time, so that system simulations can be performed within a reasonable time frame. This paper describes three methods to improve upon neural network predictions. Improvement is demonstrated for in-cylinder pressure predictions in particular. The first method incorporates a physical combustion model within the transfer function of the neural network, so that the network predictions incorporate physical relationships as well as mathematical models to fit the data. The second method shows how partitioning the data into different regimes based on different physical processes, and training different networks for different regimes, improves the accuracy of predictions.
Technical Paper

Sensitivity Analysis of a Diesel Exhaust System Thermal Model

2004-03-08
2004-01-1131
A modeling study has been conducted in order to characterize the heat transfer in an automotive diesel exhaust system. The exhaust system model, focusing on 2 exhaust pipes, has been created using a transient 1-D engine flow network simulation program. Model results are in excellent agreement with experimental data gathered before commencement of the modeling study. Predicted pipe exit stream temperatures are generally within one percent of experimental values. Sensitivity analysis of the model was the major focus of this study. Four separate variables were chosen for the sensitivity analysis. These being the external convective heat transfer coefficient, external emissivity, mass flow rate of exhaust gases, and amplitude of incoming pressure fluctuations. These variables were independently studied to determine their contribution to changes in exhaust gas stream temperature and system heat flux. There are two primary benefits obtained from conducting this analysis.
Technical Paper

Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion

2002-06-03
2002-01-1925
The present study investigated HCCI combustion in a heavy-duty diesel engine both experimentally and numerically. The engine was equipped with a hollow-cone pressure-swirl injector using gasoline direct injection. Characteristics of HCCI combustion were obtained by very early injection with a heated intake charge. Experimental results showed an increase in NOx emission and a decrease in UHC as the injection timing was retarded. It was also found that optimization can be achieved by controlling the intake temperature together with the start-of-injection timing. The experiments were modeled by using an engine CFD code with detailed chemistry. The CHEMKIN code was implemented into KIVA-3V such that the chemistry and flow solutions were coupled. The model predicted ignition timing, cylinder pressure, and heat release rates reasonably well. The NOx emissions were found to increase as the injection timing was retarded, in agreement with experimental results.
Technical Paper

Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

2002-10-21
2002-01-2772
Artificial neural networks (ANN) have been recognized as universal approximators for nonlinear continuous functions and actively applied in engine research in recent years [1, 2, 3, 4, 5, 6, 7 and 8]. This paper describes the methodology and results of using the ANN to model a turbocharged DI diesel engine. The engine was simulated using the CFD code (KIVA-ERC) over a wide range of operating conditions, and numerical simulation results were used to train the ANN. An efficient data collection methodology using the Design of Experiments (DOE) techniques was developed to select the most characteristic engine operating conditions and hence the most informative data to train the ANN. This approach minimizes the time and cost of collecting training data from either computational or experimental resources. The trained ANN was then used to predict engine parameters such as cylinder pressure, cylinder temperature, NOx and soot emissions, and cylinder heat transfer.
Technical Paper

Pulsed Regeneration for DPF Aftertreatment Devices

2011-09-11
2011-24-0182
DPF regenerations involve a trade-off between fuel economy and DPF durability. High temperature regenerations of DPFs have fewer fuel penalties but simultaneously tend to give higher substrate temperatures, which can reduce thermal reliability. In order to weaken the trade-off, the integrated system-level model [1,2,3,4] is used to conduct optimization studies and explore novel regeneration strategies for DPF aftertreatment devices. The integrated model developed in the Engine Research Center (ERC) includes sub-models for engines, emissions, aftertreatment devices and controllers. Based on the engine and regeneration fuel economy, multiple and single cycle regeneration tests are performed and analyzed. The optimal soot loadings to initiate and terminate regenerations are discussed. A pulsed regeneration strategy, which is characterized by injecting multiple pulses of fuel (upstream of a DOC) during regenerations, is investigated.
Technical Paper

Flamelet Modeling with LES for Diesel Engine Simulations

2006-04-03
2006-01-0058
Large Eddy Simulation (LES) with a flamelet time scale combustion model is used to simulate diesel combustion. The flamelet time scale model uses a steady-state flamelet library for n-heptane indexed by mean mixture fraction, mixture fraction variance, and mean scalar dissipation rate. In the combustion model, reactions proceed towards the flamelet library solution at a time scale associated with the slowest reaction. This combination of a flamelet solution and a chemical time scale helps to account for unsteady mixing effects. The turbulent sub-grid stresses are simulated using a one-equation, non-viscosity LES model called the dynamic structure model. The model uses a tensor coefficient determined by the dynamic procedure and the subgrid kinetic energy. The model has been expanded to include scalar mixing and scalar dissipation. A new model for the conditional scalar dissipation has been developed to better predict local extinction.
Technical Paper

Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays

1998-02-23
980132
To help account for fuel distribution during combustion in diesel engines, a fuel film model has been developed and implemented into the KIVA-II code [1]. Spray-wall interaction and spray-film interaction are also incorporated into the model. Modified wall functions for evaporating, wavy films are developed and tested. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity, momentum and energy equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, dynamic pressure effects, and convective heat and mass transfer.
Technical Paper

A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients

2006-04-03
2006-01-1084
A comprehensive system level modeling approach is used to understand the effects of the various physical actuators during diesel HCCI transients. Control concepts during transient operations are simulated using a set of actuators suitable for combustion control in diesel HCCI engines (intake valve actuation, injection timing, cooled EGR, intake boost pressure and droplet size). The impact of these actuating techniques on the overall engine performance is quantified by investigating the amount of actuation required, timing of actuation and the use of a combination of actuators. Combined actuation improved actuation space that can be used to phase combustion timing better and in extending the operating range. The results from transient simulations indicate that diesel HCCI operation would benefit from the combined actuation of intake valve closure, injection timing, boost and cooled EGR.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
Technical Paper

Fuel Structure and the Nature of Engine-Out Emissions

1994-10-01
941960
For several years, a single-cylinder, spark-ignited engine without catalyst has been operated at Ford on single-component fuels that are constituents of gasoline as well as on simple fuel mixtures. This paper presents a review of these experiments as well as others pertinent to understanding hydrocarbon emissions. The engine was run at four steady-state conditions which are typical of normal operation. The fuel structure and the engine operating conditions affected both the total HC emissions and the reactivity of these emissions for forming photochemical smog in the atmosphere. These experiments identified major precursor species of the toxic HC emissions benzene and 1,3-butadiene to be alkylated benzenes and either straight chain terminal olefins or cyclic alkanes, respectively. In new data presented, the primary exhaust hydrocarbon species from MTBE combustion is identified as isobutene.
Technical Paper

Modeling the Effects of Intake Flow Characteristics on Diesel Engine Combustion

1995-02-01
950282
The three-dimensional CFD codes KIVA-II and KIVA-3 have been used together to study the effects of intake generated in-cylinder flow structure on fuel-air mixing and combustion in a direct injected (DI) Diesel engine. In order to more accurately account for the effect of intake flow on in-cylinder processes, the KIVA-II code has been modified to allow for the use of data from other CFD codes as initial conditions. Simulation of the intake and compression strokes in a heavy-duty four-stroke DI Diesel engine has been carried out using KIVA-3. Flow quantities and thermodynamic field information were then mapped into a computational grid in KIVA-II for use in the study of mixing and combustion. A laminar and turbulent timescale combustion model, as well as advanced spray models, including wave breakup atomization, dynamic drop drag, and spray-wall interaction has been used in KIVA-II.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

Spark Anemometry of Bulk Gas Velocity at the Plug Gap of a Firing Engine

1995-10-01
952459
The objective of the present work was to investigate a rapid method of obtaining the convection velocity of the bulk gas near the spark plug gap of a firing engine at the time of ignition. To accomplish this, a simple model was developed which utilized both the secondary current and voltage signals, from a conventional spark discharge. The model assumed the spark path was elongated in a rectangular U-shape by the flow. Based on experimentally measured electrical signals the mean convection velocity was computed. The convection velocity calculated by the model first needed calibration which was accomplished with a bench test that used a hot wire anemometer. The technique has a weak correlation at low velocities of 1-2 m/s, but correlates well at higher velocities up to 15 m/s.
Technical Paper

Modeling the Effects of Intake Generated Turbulence and Resolved Flow Structures on Combustion in DI Diesel Engines

1996-02-01
960634
Previous studies have shown the importance of the in-cylinder flow field which exists prior to fuel injection on performance and emissions behavior of direct injected (DI) diesel engines. Key parameters in the flow field are the turbulence level and the resolved structures, such as swirl and tumble flow. These characteristics are known to have significant effects on the fuel vaporization, droplet break-up, and fuel-air mixing. The relative importance of these effects is investigated through simulation of injection into a stirred, heated, constant volume combustion bomb, using the computational fluid dynamics codes KIVA-3 [9] and KIVA-II [10]. Initial conditions for these simulations are based on in-cylinder conditions which exist in a heavy duty DI diesel engine immediately prior to fuel injection.
Technical Paper

Modeling Fuel Film Formation and Wall Interaction in Diesel Engines

1996-02-01
960628
A fuel film model has been developed and implemented into the KIVA-II code to help account for fuel distribution during combustion in diesel engines. Spray-wall interaction and spray-film interaction are also incorporated into the model. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity and momentum equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, and dynamic pressure effects. In order to adequately represent the drop interaction process, impingement regimes and post-impingement behavior have been modeled using experimental data and mass, momentum and energy conservation constraints. The regimes modeled for spray-film interaction are stick, rebound, spread, and splash.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
X