Refine Your Search

Topic

Search Results

Standard

Electric Drive Cooling Fan Motor Mounting

2016-03-11
CURRENT
J2873_201603
This SAE Recommended Practice is applicable to Electric Drive Cooling Fan Assemblies used in Light Duty vehicle cooling systems (typically, passenger cars and light duty trucks). This document outlines the Electric Drive Cooling Fan Motor Mounting interface characteristics such that a common standard is possible.
Standard

Electric Drive Cooling Fan Motor Mounting

2010-07-08
HISTORICAL
J2873_201007
This SAE Recommended Practice is applicable to Electric Drive Cooling Fan Assemblies used in Light Duty vehicle cooling systems (typically, passenger cars and light duty trucks). This document outlines the Electric Drive Cooling Fan Motor Mounting interface characteristics such that a common standard is possible.
Standard

Radiator Nomenclature

2018-10-09
CURRENT
J631_201810
This SAE Recommended Practice documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Radiator Nomenclature

2013-11-07
HISTORICAL
J631_201311
This SAE Standard documents standard nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

2012-06-19
HISTORICAL
J1342_201206
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

2017-06-26
CURRENT
J1342_201706
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
Standard

Engine Cooling Fan Structural Analysis

1982-04-01
HISTORICAL
J1390_198204
Three levels of fan structural analysis are included in this practice: 1. Initial Structural Integrity 2. In-vehicle Testing 3. Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Engine Cooling Fan Structural Analysis

2017-06-01
CURRENT
J1390_201706
Three levels of fan structural analysis are included in this practice: a Initial Structural Integrity b In-vehicle Testing c Durability (Laboratory) Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

Engine Cooling Fan Structural Analysis

2012-01-09
HISTORICAL
J1390_201201
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans--Material, Manufacturing, and Test Considerations

2012-02-06
CURRENT
J1474_201202
The following topics are included in this report: Section 2 - References Section 3-Definitions Section 4 - Material Selection Section 5 - Production Considerations Section 6 - Initial Structural Integrity Section 7 - In-Vehicle Testing Section 8 - Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans Material, Manufacturing, and Test Considerations

2003-04-25
HISTORICAL
J1474_200304
The following topics are included in this report: Section 2-References Section 3-Definitions Section 4-Material Selection Section 5-Production Considerations Section 6-Initial Structural Integrity Section 7-In-Vehicle Testing Section 8-Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans--Material, Manufacturing, and Test Considerations

2009-12-14
HISTORICAL
J1474_200912
The following topics are included in this report: Section 2-References Section 3-Definitions Section 4-Material Selection Section 5-Production Considerations Section 6-Initial Structural Integrity Section 7-In-Vehicle Testing Section 8-Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans--Material, Manufacturing, and Test Considerations

1985-01-01
HISTORICAL
J1474_198501
The following topics are included in this report: Section 2 - References Section 3-Definitions Section 4 - Material Selection Section 5 - Production Considerations Section 6 - Initial Structural Integrity Section 7 - In-Vehicle Testing Section 8 - Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
Standard

Oil Cooler Application Testing and Nomenclature

2010-10-01
HISTORICAL
J1468_201010
This SAE Recommended Practice is applicable to oil-to-air and oil-to-water oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Oil Cooler Application Testing and Nomenclature

2017-03-21
CURRENT
J1468_201703
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Low-Temperature Coolant Circuit Nomenclature and Applications

2018-11-08
CURRENT
J3136_201811
The document provides clarity related to multiple temperature coolant circuits used in on- and off-highway, gasoline, and light- to heavy-duty diesel engine cooling systems. Out of scope are the terms and definitions of thermal flow control valves used in either low- or high-temperature coolant circuits. This subject is covered in SAE J3142.
Standard

Automobile and Light Truck Engine Coolant Concentrate Ethylene Glycol Type

1988-07-01
HISTORICAL
J1034_198807
This SAE Recommended Practice applies to engine coolant concentrate, ethylene glycol base, for use in automotive and light truck engine cooling systems. This document applies to engine coolant concentrates for aluminum compatible requirements. Please refer to SAE J1941 and J2307 DRAFT for coolants used in heavy-duty diesel engine cooling systems. For further information on engine coolants, see SAE J814 and J2306.
Standard

Automobile and Light Truck Engine Coolant Concentrate Ethylene Glycol Type

1973-06-01
HISTORICAL
J1034_197306
This SAE Recommended Practice applies to engine coolant concentrate, ethylene glycol base, for use in automotive and light truck engine cooling systems. This document applies to engine coolant concentrates for aluminum compatible requirements. Please refer to SAE J1941 and J2307 DRAFT for coolants used in heavy-duty diesel engine cooling systems. For further information on engine coolants, see SAE J814 and J2306.
X