Refine Your Search

Topic

Search Results

Standard

Test Method for Determining Power Consumptionof Engine Cooling Fan-Drive Systems

2001-06-25
HISTORICAL
J1342_200106
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan-drive system. These may include radiators, condensers, charge air coolers, or oil coolers. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan-drive systems, specific test devices have not been included. Using know power/speed relationships for a given fan, this procedure can be used to calculate the fan-drive system's power consumption for engine cooling systems using fixed-ratio, speed modulating, and on/off fan drives. This power consumption may then be used in determining engine net power per SAE J1349.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

2007-06-13
HISTORICAL
J1342_200706
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan-drive system. These may include radiators, condensers, charge air coolers, or oil coolers. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan-drive systems, specific test devices have not been included. Using know power/speed relationships for a given fan, this procedure can be used to calculate the fan-drive system's power consumption for engine cooling systems using fixed-ratio, speed modulating, and on/off fan drives. This power consumption may then be used in determining engine net power per SAE J1349.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

1994-09-01
HISTORICAL
J1342_199409
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

1981-07-01
HISTORICAL
J1342_198107
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
Standard

Test Method for Determining Power Consumption of Engine Cooling Fan Drive Systems

1989-08-01
HISTORICAL
J1342_198908
The technique outlined in this SAE Recommended Practice was developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for engine cooling systems using fixed ratio, viscous or speed modulating, and mechanical on/off fan drives including electronically activated fan drives.
Standard

Engine Cooling Fan Structural Analysis

1982-04-01
HISTORICAL
J1390_198204
Three levels of fan structural analysis are included in this practice: 1. Initial Structural Integrity 2. In-vehicle Testing 3. Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Engine Cooling Fan Structural Analysis

2017-06-01
CURRENT
J1390_201706
Three levels of fan structural analysis are included in this practice: a Initial Structural Integrity b In-vehicle Testing c Durability (Laboratory) Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

Engine Cooling Fan Structural Analysis

2012-01-09
HISTORICAL
J1390_201201
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Fuel Cell Thermal Management

2019-01-28
WIP
J3193
The purpose of this SAE Information Report is to provide an overview of special requirements and practices in fuel cell thermal management. This document is primarily directed at full cell applications in motor vehicles.
Standard

Application Testing of Oil-to-Water Oil Coolers for Heat Transfer Performance

2010-10-15
CURRENT
J2414_201010
This SAE Recommended Practice is applicable to oil-to-water oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluids, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-air oil coolers for heat transfer performance, see SAE J1468. The purpose of this document is to provide a procedure for determining the heat transfer performance characteristics of an oil- to-water oil cooler under specified application operation conditions.
Standard

Quick Connect Fluid Coupling Specification for Water/Glycol Coolant System Interconnect

2019-07-22
WIP
J3207
This SAE Recommended Practice defines the dimensional characteristics and minimum performance requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in glycol/water coolant systems. This document applies to automotive and truck applications under the following conditions: a. Gasoline, diesel, hybrid, and electrical propulsion cooling systems. b. Operating pressure up to 206 kPa, 2.06 bar, (30 psig). c. Operating temperatures from -40 °C (-40 °F) to 125 °C (260 °F). Quick connect couplings function by joining the connector to a mating end form typically without the use of tools. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Standard

Heavy Duty Vehicle Cooling Test Code

1994-03-01
HISTORICAL
J1393_199403
This document supersedes SAE J819 - Engine Cooling System Field Test. The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of engine cooling systems, including charge air coolers, on heavy-duty vehicles with liquid-cooled internal combustion engines. The definition of heavy vehicles for this document includes, but is not limited to, on- and off-highway trucks, cranes, drill rigs, construction, forestry and agricultural machines. Vehicles equipped with side or rear-mounted radiators may require an alternate procedure of a towing dynamometer because of peculiar aerodynamics. Testing is generally conducted to determine compliance with cooling criteria established by the engine manufacturer or the end product user to meet a desired engine reliability goal.
Standard

Oil Cooler Application Testing and Nomenclature

1985-11-01
HISTORICAL
J1468_198511
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-water oil coolers for heat transfer performance, see SAE J2414.
Standard

Oil Cooler Application Testing and Nomenclature

2017-03-21
CURRENT
J1468_201703
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Oil Cooler Application Testing and Nomenclature

2010-10-01
HISTORICAL
J1468_201010
This SAE Recommended Practice is applicable to oil-to-air and oil-to-water oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Pressure Relief for Cooling System

2019-10-09
WIP
J151

This SAE Recommended Practice specifies requirements for pressure relief means and pressure relief rating identification for cooling systems of liquid-cooled engines to reduce the possibility of injuries during opening of the cooling system.

Standard

Exhaust Gas Recirculation (EGR) Cooler Nomenclature and Application

2016-08-23
CURRENT
J2914_201608
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
X