Refine Your Search

Topic

Search Results

Standard

Laboratory Testing of Light-Duty Vehicle Electric Cooling Fan Assemblies for Airflow Performance

2023-02-21
WIP
J2867
This SAE recommended practice is intended for use in testing and evaluating the performance of light-duty automotive electric engine cooling fan assemblies. These Electric Cooling Fan (ECF) assemblies are purchased by light-duty truck and passenger car OEMs from suppliers. They are purchased as complete assemblies, consisting mainly of the fan(s), motor(s), and shroud (see Figure 1); this Recommended Practice will only consider such complete assemblies. Some purchased assemblies using brush-type motors may also include digital control devices such as power resistors or pulse width modulation (PWM) electronics or local interconnect network (LIN) for speed control. In the case of brushless motor technology, the controller is an integral part of the motor where it also performs the commutation process electronically. The performance measurement would include fan output in terms of airflow and pressure, and fan input electric power in terms of voltage and current.
Standard

Laboratory Testing of Light-Duty Vehicle Electric Cooling Fan Assemblies for Airflow Performance

2019-02-13
CURRENT
J2867_201902
This SAE recommended practice is intended for use in testing and evaluating the performance of light-duty automotive electric engine cooling fan assemblies. These Electric Cooling Fan (ECF) assemblies are purchased by light-duty truck and passenger car OEMs from suppliers. They are purchased as complete assemblies, consisting mainly of the fan(s), motor(s), and shroud (see Figure 1); this Recommended Practice will only consider such complete assemblies. Some purchased assemblies using brush-type motors may also include digital control devices such as power resistors or pulse width modulation (PWM) electronics or local interconnect network (LIN) for speed control. In the case of brushless motor technology, the controller is an integral part of the motor where it also performs the commutation process electronically. The performance measurement would include fan output in terms of airflow and pressure, and fan input electric power in terms of voltage and current.
Standard

Low-Temperature Coolant Circuit Nomenclature and Applications

2023-04-18
WIP
J3136
The document provides clarity related to multiple temperature coolant circuits used in on- and off-highway, gasoline, and light- to heavy-duty diesel engine cooling systems.Out of scope are the terms and definitions of thermal flow control valves used in either low- or high-temperature coolant circuits. This subject is covered in SAE J3142.
Standard

Engine Charge Air Cooler (CAC) Nomenclature

1990-06-01
HISTORICAL
J1148_199006
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters. An engine charge air cooler is a heat exchanger used to cool the charge air of an internal combustion engine after it has been compressed by an exhaust gas driven turbocharger, an engine driven turbocharger, or a mechanically or electrically driven blower. The use of a charge air cooler allows increased engine horsepower output, and may reduce emission levels and improve fuel economy through a more complete combustion due to the increased air density available. Typical cooling media includes the engine's coolant, ambient air, or an external water or coolant source.
Standard

Oil Cooler Application Testing and Nomenclature

2021-12-13
CURRENT
J1468_202112
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

Oil Cooler Application Testing and Nomenclature

2010-10-01
HISTORICAL
J1468_201010
This SAE Recommended Practice is applicable to oil-to-air and oil-to-water oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
Standard

APPLICATION TESTING OF OIL-TO-AIR OIL COOLERS FOR COOLING PERFORMANCE

1993-05-20
HISTORICAL
J1468_199305
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. This document outlines the method of procuring the test data to determine operating characteristics of the oil cooling system and the interpretation of the test results.
Standard

APPLICATION TESTING OF OIL TO AIR OIL COOLERS FOR COOLING PERFORMANCE

1985-11-01
HISTORICAL
J1468_198511
This Recommended Practice is applicable to oil to air oil coolers installed on mobile or stationary equipment. This document outlines the method of procuring the test data to determine operating characteristics of the oil cooling system and the interpretation of the test results.
Standard

Pressure Relief for Cooling System

2015-08-27
HISTORICAL
J151_201508
This SAE Recommended Practice specifies requirements for pressure relief means and pressure relief rating identification for cooling systems of liquid-cooled engines to reduce the possibility of injuries during opening of the cooling system.
Standard

Pressure Relief for Cooling System

1999-03-01
HISTORICAL
J151_199903
This SAE Recommended Practice specifies requirements for pressure relief means and pressure relief rating identification for cooling systems of liquid-cooled engines to reduce the possibility of injuries during opening of the cooling system.
Standard

Pressure Relief for Cooling System

2020-04-28
CURRENT
J151_202004
This SAE Recommended Practice specifies requirements for pressure relief means and pressure relief rating identification for cooling systems of liquid-cooled engines to reduce the possibility of injuries during opening of the cooling system.
Standard

Pressure Relief for Cooling System

2008-09-05
HISTORICAL
J151_200809
This SAE Recommended Practice specifies requirements for pressure relief means and pressure relief rating identification for cooling systems of liquid-cooled engines to reduce the possibility of injuries during opening of the cooling system.
Standard

FAN HUB BOLT CIRCLES AND PILOT HOLES

1984-07-01
HISTORICAL
J635_198407
The scope of the specification is limited to heavy-duty diesel engine manufacturers, fan suppliers, and end users. Standard mounting patterns are given for fans up to 2000 mm rotating diameter. Passenger car and light-duty fans were not addressed because committee members issuing the specification felt that standards for these fans could be better addressed by personnel working in the market segments which use those fans. Rationale for issuance of the specification is cost savings through reduction of part numbers and inventory. Failure to comply with this specification will result in the need to release and carry in inventory parts of identical blade geometry and construction, but with different mounting patterns.
Standard

FAN HUB BOLT CIRCLES AND PILOT HOLES

1995-06-28
HISTORICAL
J635_199506
The purpose of this SAE Recommended Practice is to encourage the standardization of mounting patterns for engine cooling fans as new engines are designed and developed in SI metric units. It is specifically not the objective of the specification to address the soft metric conversion of existing mounting patterns on engines designed in English units. The scope of the specification is limited to heavy-duty diesel engine manufacturers, fan suppliers, and end users. Standard mounting patterns are given for fans up to 2000 mm rotating diameter. Passenger car and light-duty fans were not addressed because committee members issuing the specification felt that standards for these fans could be better addressed by personnel working in the market segments which use those fans. See Figure 1 and Table 1. Rationale for issuance of the specification is cost savings through reduction of part numbers and inventory.
X