Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Multi-Dimensional Modeling of NO and Soot Emissions with Detailed Chemistry and Mixing in a Direct Injection Natural Gas Engine

2002-03-04
2002-01-1112
This work reports the development and application of multi-dimensional ignition, combustion and emissions models that account for detailed chemistry and mixing effects in a direct injection engine simulation. A detailed chemical reaction mechanism, consisting of 24 species and 104 reactions, is used for increased accuracy of emissions predictions. Turbulent combustion is represented using a modified Eddy Dissipation Concept (EDC) model to account for mixing effects. The soot model includes all aspects of soot formation and destruction. Particle transport equations are used to realistically track transport of the soot particles formed. All computational sub-models developed in this work have been implemented in a modified version of the KIVA-3V code. In order to illustrate the behavior of the new models, soot and NO emissions have been predicted at different operating conditions by varying injection timing, exhaust gas recirculation (EGR) and injection pressure.
Technical Paper

Engine Oil Effects on the Friction and Emissions of a Light-Duty, 2.2L Direct - Injection - Diesel Engine Part 1 - Engine Test Results

2002-10-21
2002-01-2681
The effects of lubricating oil on friction and engine-out emissions in a light-duty 2.2L compression ignition direct injection (CIDI) engine were investigated. A matrix of test oils varying in viscosity (SAE 5W-20 to 10W-40), friction modifier (FM) level and chemistry (MoDTC and organic FM), and basestock chemistry (mineral and synthetic) was investigated. Tests were run in an engine dynamometer according to a simulated, steady state FTP-75 procedure. Low viscosity oils and high levels of organic FM showed benefits in terms of fuel economy, but there were no significant effects observed with the oils with low MoDTC concentration on engine friction run in this program. No significant oil effects were observed on the gaseous emissions of the engine. PM emissions were analyzed for organic solubles and insolubles. The organic soluble fraction was further analyzed for the oil and fuel soluble portions.
Technical Paper

The Reverse Engineering of a Turbocharged Diesel Engine through a Unified Systems Approach

2001-03-05
2001-01-1244
The need for a rigorous systems engineering approach to automotive powertrains has been addressed in this work from the perspective of the diesel engine. A high-fidelity engine simulation has been integrated with a total vehicle model for the purpose of reverse engineering the optimal powerplant for a given vehicle mission. Engine parameters have been coordinated between the simulations to develop a framework for total vehicle design. The design strategies discussed in this paper allow engine researchers to set targets for individual system components and to analyze the tradeoffs associated with different vehicle mission objectives. A detailed case study employing these techniques is presented for a conventional vehicle where the most fuel-efficient engine is found that simultaneously conforms to the desired performance criteria.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
Technical Paper

Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine

2005-04-11
2005-01-0167
Simultaneous reduction of nitric oxides (NOx) and particulate matter (PM) emissions is possible in a diesel engine by employing a Partially Premixed Compression Ignition (PPCI) strategy. PPCI combustion is attainable with advanced injection timings and heavy exhaust gas recirculation rates. However, over-advanced injection timing can result in the fuel spray missing the combustion bowl, thus dramatically elevating PM emissions. The present study investigates whether the use of narrow spray cone angle injector nozzles can extend the limits of early injection timings, allowing for PPCI combustion realization. It is shown that a low flow rate, 60-degree spray cone angle injector nozzle, along with optimized EGR rate and split injection strategy, can reduce engine-out NOx by 82% and PM by 39%, at the expense of a modest increase (4.5%) in fuel consumption.
Technical Paper

Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects

2001-03-05
2001-01-1028
The Homogeneous Charge Compression Ignition (HCCI) combustion concept is currently under widespread investigation due to its potential to increase thermal efficiency while greatly decreasing harmful exhaust pollutants. Simulation tools have been developed to explore the implications of initial mixture thermodynamic state on engine performance and emissions. In most cases these modeling efforts have coupled a detailed fuel chemistry mechanism with empirical descriptions of the in-cylinder heat transfer processes. The primary objective of this paper is to present a fundamentally based boundary layer heat transfer model. The two-zone combustion model couples an adiabatic core zone with a boundary layer heat transfer model. The model predicts film coefficient, with approximately the same universal shape and magnitudes as an existing global model.
Technical Paper

Load Limits with Fuel Effects of a Premixed Diesel Combustion Mode

2009-06-15
2009-01-1972
Premixed diesel combustion is intended to supplant conventional combustion in the light to mid load range. This paper demonstrates the operating load limits, limiting criteria, and load-based emissions behavior of a direct-injection, diesel-fueled, premixed combustion mode across a range of test fuels. Testing was conducted on a modern single-cylinder engine fueled with a range of ultra-low sulfur fuels with cetane number ranging from 42 to 53. Operating limits were defined on the basis of emissions, noise, and combustion stability. The emissions behavior and operating limits of the tested premixed combustion mode are independent of fuel cetane number. Combustion stability, along with CO and HC emissions levels, dictate the light load limit. The high load limit is solely dictated by equivalence ratio: high PM, CO, and HC emissions result as overall equivalence ratio approaches stoichiometric.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Technical Paper

Performance Parameter Analysis of a Biodiesel-Fuelled Medium Duty Diesel Engine

2009-04-20
2009-01-0481
Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or energy content of the fuel). A lower heating value of the fuel would, presuming all other parameters are equal, result in decreased engine torque. Since engine torque is often user-demanded, the lower heating value of the fuel generally translates into increased brake specific fuel consumption. Several literature report this characteristic of biodiesel. In spite of the wealth of fuel consumption characteristic data available for biodiesel, it is not clear how other engine performance parameters may change with the use of biodiesel. Characterizing these parameters becomes complicated when considering the interactions of the various engine systems, such as a variable geometry turbocharger with exhaust gas recirculation.
Technical Paper

Biodiesel Imposed System Responses in a Medium-Duty Diesel Engine

2010-04-12
2010-01-0565
The often-observed differences in nitrogen oxides, or NOx, emissions between biodiesel and petroleum diesel fuels in diesel engines remain intense topics of research. In several instances, biodiesel-fuelled engines have higher NOx emissions than petroleum-fuelled engines; a situation often referred to as the "biodiesel NOx penalty." The literature is rich with investigations that reveal many fundamental mechanisms which contribute to (in varying and often inverse ways) the manifestation of differences in NOx emissions; these mechanisms include, for example, differences in ignition delay, changes to in-cylinder radiation heat transfer, and unequal heating values between the fuels. In addition to fundamental mechanisms, however, are the effects of "system-response" issues.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Characterizing the Influence of EGR and Fuel Pressure on the Emissions in Low Temperature Diesel Combustion

2011-04-12
2011-01-1354
In the wake of global focus shifting towards the health and conservation of the planet, greater importance is placed upon the hazardous emissions of our fossil fuels, as well as their finite supply. These two areas remain intense topics of research in order to reduce greenhouse gas emissions and increase the fuel efficiency of vehicles, a sector which is a major contributor to society's global CO₂ emissions and consumer of fossil-fuel resources. A particular solution to this problem is the diesel engine, with its inherently fuel-lean combustion, which gives rise to low CO₂ production and higher efficiencies than other potential powertrain solutions. Diesel engines, however, typically exhibit higher nitrogen oxides (NOx) and soot engine-out emissions than their gasoline counterparts. NOx is an ingredient to ground-level ozone production and smoke is a possible carcinogen, both of which are facing stricter emissions regulations.
Technical Paper

Heat Release Parameters to Assess Low Temperature Combustion Attainment

2011-04-12
2011-01-1350
Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine-out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species of notoriety for their difficulty in after-treatment removal. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). This paper presents an investigation into the manifestation of LTC in the calculated heat release profile. Such a study could be important since some extreme LTC conditions may exhibit a return to the soot-NOx tradeoff, rendering an emissions-based definition of LTC unhelpful.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
X