Refine Your Search

Topic

Search Results

Video

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-06-18
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Technical Paper

Single-Stage Dilution Tunnel Design

2001-03-05
2001-01-0207
A single-stage dilution system has been designed to simulate the process of engine exhaust dilution in the atmosphere. An exhaust sample stream is introduced into a partial flow tunnel where it is diluted at a controlled rate. Temperature, relative humidity, dilution ratio and rate, and residence time are all adjustable. The system includes a turbulence generator to adjust the intensity of turbulence in the tunnel and a wake disk to control the initial mixing rate. Numerical methods were used to simulate flow fields, velocity fields, and mixing profiles for gases and particles. Mixing profiles for a gaseous tracer and particles of different sizes were also determined experimentally and compared with the model predictions. Critical parameters that influence mixing profiles and dilution rates predicted by modeling were demonstrated experimentally. Predicted and measured normalized mixing profiles were found to be in good agreement.
Technical Paper

Single-Stage Dilution Tunnel Performance

2001-03-05
2001-01-0201
A one-stage dilution tunnel has been developed to sample and dilute diesel exhaust. The tunnel has the capability of simulating many aspects of the atmospheric dilution process. The dilution rate and overall dilution ratio, temperature, relative humidity, and residence time in the tunnel, as well as residence time and temperature in the transfer line between the tunnel and exhaust sampling point may be varied. In this work we studied the influence of the exhaust transfer line, tunnel residence time, and dilution air temperature on the exhaust particle size distribution. The influences of fuel sulfur content on the size distribution and on the sensitivity of the size distribution to dilution and sampling conditions were also examined. We do not suggest an optimum dilution scheme, but do identify critical variables.
Technical Paper

Influence of Fuel Additives and Dilution Conditions on the Formation and Emission of Exhaust Particulate Matter from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-2018
Experiments were performed to measure the number-weighted particle size distributions emitted from a gasoline direct injection (GDI) engine. Measurements were made on a late model vehicle equipped with a direct injection spark ignition engine. The vehicle was placed on a chassis dynamometer, which was used to load the engine to road load at five different vehicle speeds ranging from 15 - 100 km/hr. Dilution of the exhaust aerosol was carried out using a two-stage dilution system in which the first stage dilution occurs as a free jet. Particle size distributions were measured using a TSI 3934 scanning mobility particle sizer. Generally speaking, the presence of the additives did not have a strong, consistent influence on the particle emissions from this engine. The polyether amine demonstrated a reduction in particle number concentration as compared to unadditized base fuel.
Technical Paper

Exhaust Particle Number and Size Distributions with Conventional and Fischer-Tropsch Diesel Fuels

2002-10-21
2002-01-2727
Diesel exhaust particle number concentrations and size distributions, as well as gaseous and particulate mass emissions, were measured during steady-state tests on a US heavy-duty engine and a European passenger car engine. Two fuels were compared, namely a Fischer-Tropsch diesel fuel manufactured from natural gas, and a US D2 on-highway diesel fuel. With both engines, the Fischer-Tropsch fuel showed a considerable reduction in the number of particles formed by nucleation, when compared with the D2 fuel. At most test modes, particle number emissions were dominated by nucleation mode particles. Consequently, there were generally large reductions (up to 93%) in the total particle number emissions with the Fischer-Tropsch fuel. It is thought that the most probable cause for the reduction in nucleation mode particles is the negligible sulphur content of the Fischer-Tropsch fuel. In general, there were also reductions in all the regulated emissions with the Fischer-Tropsch fuel.
Technical Paper

Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions from a Heavily-Used Diesel Engine During Transient Operation

2007-04-16
2007-01-0319
The effects of fuel sulfur content and dilution conditions on diesel engine PM number emissions have been researched extensively through steady state testing. Most results show that the concentration of nuclei-mode particles emitted increases with fuel sulfur content. A few studies further observed that fuel sulfur content has little effect on the emissions of heavily-used engines. It has also been found that primary dilution conditions can have a large impact on the size and number distribution of the nuclei-mode particles. These effects, however, have not yet been fully understood through transient testing, the method used by governments worldwide to certify engines and regulate emissions, and a means of experimentation which generates realistic conditions of on-road vehicles by varying the load and speed of the engine.
Technical Paper

Nanoparticle Growth During Dilution and Cooling of Diesel Exhaust: Experimental Investigation and Theoretical Assessment

2000-03-06
2000-01-0515
Nanoparticle formation during exhaust sampling and dilution has been examined using a two-stage micro-dilution system to sample the exhaust from a modern, medium-duty diesel engine. Growth rates of nanoparticles at different exhaust dilution ratios and temperatures have been determined by monitoring the evolution of particle size distributions in the first stage of the dilution system. Two methods, graphical and analytical, are described to determine particle growth rate. Extrapolation of size distribution down to 1 nm in diameter has been demonstrated using the graphical method. The average growth rate of nanoparticles is calculated using the analytical method. The growth rate ranges from 6 nm/sec to 24 nm/sec, except at a dilution ratio of 40 and primary dilution temperature of 48 °C where the growth rate drops to 2 nm /sec. This condition seems to represent a threshold for growth. Observed nucleation and growth patterns are consistent with predictions of a simple physical model.
Technical Paper

Impact of a Ceramic Trap and Manganese Fuel Additive on the Biological Activity and Chemical Composition of Exhaust Particles from Diesel Engines Used in Underground Mines

1987-09-14
871621
This study examines the effect of a ceramic particle trap and a manganese fuel additive on the mutagenic activity and chemical composition of diesel exhaust particulate matter from a heavy-duty mining engine. Particles were collected by dilution tunnel sampling from a 4-cylinder, Caterpillar 3304, naturally-aspirated, indirect-injection engine operated at six steady-state conditions. Depending on engine load and speed the ceramic particle trap reduced the following emissions: particulate matter, 80 – 94%; soluble organic fraction (SOF), 83 – 95%; 1-nitropyrene, 94 – 96%; and SOF mutagencity, 72% (cycle-weighted average). When the Mn fuel additive was used without a ceramic particle trap the total cycle mutagenic activity emitted increased 7-fold, in part, due to elevated emissions of 1-nitropyrene.
Technical Paper

Particle Growth and Oxidation in a Direct-Injection Diesel Engine

1989-02-01
890580
Time resolved primary and agglomerate particle size distribution measurements have been made on samples obtained from within the cylinder and from the exhaust of a single-cylinder modification of a 2.8 liter displacement, four-cylinder, naturally-aspirated, high swirl, direct-injection diesel engine. The total cylinder sampling method has been used to sample, quench, and dilute the entire contents of the cylinder in about 1 ms. Experiments have been performed at an equivalence ratio of 0.7 and a speed of 1000 RPM. An electrostatic aerosol sampler and a transmission electron microscope have been used to determine primary and agglomerate particle size distributions for both in-cylinder and exhaust samples. An electrical aerosol analyzer and a diffusion battery followed by a condensation nucleus counter were used to further characterize the agglomerate size distributions of exhaust samples.
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

2008-04-14
2008-01-0648
A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Technical Paper

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

2003-10-27
2003-01-3179
Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile.
Technical Paper

Reducing Utility Engine Exhaust Emissions with a Thermal Reactor

1995-09-01
951762
A test reactor was designed for a 6.7 kW, 303 cc, single cylinder, air cooled, gasoline fueled engine. The reactor was very efficient at hydrocarbon (HC) and carbon monoxide (CO) reductions - with up to 99.9 and 98.6% removed, respectively. It had no effect on oxides of nitrogen (NOx) emissions. With the reactor, the engine met the California Air Resources Board (ARB) proposed Tier II emission standards. A factorial test was used to determine that A/F ratio and air injection rate significantly affected CO reduction efficiency whereas air injection location, ignition timing, and engine load did not. Relationships were established between CO reduction, air injection rate, and reactor core temperature.
Technical Paper

Closed Loop Digital Electronic Control of Diesel Engine Timing

1983-02-01
830579
The performance of a closed-loop electronic fuel injection timing control system for diesel engines has been investigated, both experimentally and analytically. The Electronic Control System (ECS) studied is a version of the “Optimizer,” a peak seeking control which can find the maximum of one variable with respect to another. In this case, it was used to find the timing for maximum brake torque (MBT). The ECS can also be operated in a “biased” mode in which it will hold the timing either advanced or retarded of MBT, but in a fixed relationship to it. Performance and emissions of a medium duty engine equipped with the ECS were measured on an engine dynamometer. The results clearly demonstrate that, for a variety of operating conditions and for two fuels, the ECS can find and hold the timing at MBT or in fixed relationship to it.
Technical Paper

Diesel Exhaust Particle Size Distributions - Fuel and Additive Effects

1978-02-01
780787
Particle mass and size distribution measurements have been made on the exhaust of an Onan prechamber diesel engine. Seven fuels were examined: no. 1 and no. 2 diesel fuel, 40 and 50 cetane number secondary reference fuels, and no. 2 diesel fuel doped with three different concentrations of Lubrizol 565, a barium-based smoke suppressant. The no. 1 and no. 2 diesel fuels and the 50 cetane number reference fuels produced very similar emissions with emission indices in the range 0.3-1.3 mg (gm-fuel)-1 and volume mean diameters between .09 and 0.15 μm. The 40 cetane number reference fuel produced both smaller emission indices, 0.2 to 0.8 mg (gm-fuel)-1, and particle diameters, 0.03 to 0.09 μm. These reductions were apparently related to the longer ignition delay period of the 40 cetane number fuel, which allowed better mixing of the fuel and air prior to combustion.
Technical Paper

Further Studies with a Hydrogen Engine

1978-02-01
780233
This paper describes the performance and emissions of a hydrogen-fueled, spark-ignited engine. An electronic control device, designed to provide the engine with a timed injection of the fuel, is shown to give high mean effective pressures and high efficiencies. The oxides of nitrogen from the exhaust gases have been analyzed and the mechanism for their formation is reviewed. The paper further describes an experiment with traces of hydrocarbons added to the hydrogen in an attempt to explain any additional phenomena that may be taking place during the combustion, such as “prompt NO” which is known to occur in hydrocarbon flames only. As it turns out, such additions have a negligible effect on the NOx formation in the region investigated.
Technical Paper

Measurements of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine

1984-02-01
840364
A unique system which allows sampling of the entire contents of one of the cylinders of a 5.7-liter V-8 indirect-injection diesel engine has been developed. An explosively actuated cutter ruptures a diaphragm in the combustion chamber and allows the contents of the cylinder to rush out and be subsequently diluted and quenched with cool nitrogen. Particles are collected with a high-volume impactor/filter system. This system has been used to collect a series of particle samples at crankangles ranging from 5 to 40 degrees after top dead center. Particle samples from the exhaust were also obtained. The samples have been extracted to determine the soluble organic fraction. These extracts have been analyzed for five polycyclic aromatic compounds: pyrene, fluoranthene, benz(a)pyrene, benz(k)fluoranthene, and 1-nitropyrene. The results indicate significant removal of the first four between the combustion chamber and the exhaust manifold.
Technical Paper

The Influence of a Ceramic Particle Trap on the Size Distribution of Diesel Particles

1985-02-01
850009
The U.S. Bureau of Mines has sponsored research Co determine the particle size distribution and concentration of submicron particles upstream and downstream of a ceramic particle trap mounted in the exhaust stream of a Caterpillar 3304 diesel engine. Particle size distribution and mass were measured with an electrical aerosol analyzer, a diffusion battery-condensation nuclei counter combination, and filters. The engine was operated at 1400 and 1800 RPM and 3 load conditions at each speed-In general, the collection efficiency of the trap was high, ranging between 89 to 96%. Size distribution analysis revealed that the trap was generally more efficient at removing particles smaller than 0.1 µm diameter than larger particles. However, under certain conditions formation of nuclei (less than 0.056 µm diameter) downstream of the trap took place.
Technical Paper

Light Absorption Measurements of Diesel Particulate Matter

1981-02-01
810181
Light absorption and scattering coefficients have been measured for particles emitted by two diesel engines; one direct injection and one indirect injection, operating over a range of speeds and loads. Integrating plate absorption measurements yield a specific absorption coefficient of 9.1 square meters per gram of non-volatile particulate matter at 550 nm wavelength. This absorption coefficient is inversely proportional to wavelength and independent of engine operating conditions or type. The scattering coefficient was simultaneously measured as 1.3 square meters per gram of undifferentiated particulate matter. These experimental results are shown to be in the range predicted by theoretical absorption and scattering calculations, which have been made for elongated carbon-void particles.
Technical Paper

Total Cylinder Sampling from a Diesel Engine: Part III - Particle Measurements

1983-02-01
830243
Particle formation, growth, coagulation and combustion in the cylinder of an indirect injection passenger car type diesel engine have been studied using a system which allows the cylinder contents to be rapidly expelled through a blowdown port, diluted, and collected in a sample bag for subsequent analysis. Characteristic blowdown times were about 0.5 ms. Samples were analyzed using a condensation nuclei counter to determine particle number concentrations and an electrical aerosol analyzer to determine particle volume concentrations in the 0.01 to 1.0 μm diameter range. Measurements were made with the engine operating at 1000 rpm and an equivalence ratio of 0.32. Peak particle number concentration in the cylinder 13 times the exhaust level, and peak particle volume (or mass) concentration in the cylinder 3 times the exhaust level were observed. These results suggest that significant particle coagulation and oxidation occur during the expansion stroke.
Technical Paper

Nonintrusive Acoustic System for the Dynamic Timing of Diesel Engines

1983-02-01
830102
Vibration signals from diesel engines were analyzed for the purpose of isolating signals relating to injection or combustion which could be used to time the engines. Nonintrusive sensors, magnetically attached to the engine, were used to obtain these vibration signals. Components believed to be associated with combustion or fuel injection were electronically isolated from the remaining engine noise, and subsequently processed to produce specific timing signals. Digital data acquisition and averaging methods were used, coupled with computerized frequency analysis. The signals were experimentally correlated with the combustion process over a wide range of injection timing. The electronic processing system developed provides a real time digital measure of the timing. Data on the accuracy and correlation of experimental measurements will be presented.
X