Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Crash Injury Risks for Obese Occupants

2008-04-14
2008-01-0528
Obesity rates are reaching an epidemic worldwide. In the US, nearly 40 million people are obese. The automotive safety community is starting to question the impact of obesity on occupant protection. This study investigates fatality and serious injury risks for front-seat occupants by Body Mass Index (BMI). NASS-CDS data was analyzed for calendar years 1993-2004. Occupant exposure and injury was divided in seven BMI categories with obese defined as those with BMI ≥ 30 kg/m2. Injuries were studied for drivers and right-front passengers and included analysis of lap-shoulder belted and unbelted occupants. The results show that obese occupants have a higher fatality risk compared to normal BMI occupants; morbidly obese occupants (BMI ≥ 40 kg/m2) have 2.25 times higher fatality risk (1.15% v 0.51%). The fatality risk for belted obese drivers was 0.29%, which was 6.7 times lower than the 1.94% for those unbelted. These rates are similar to other BMI occupants.
Journal Article

Vehicle and Occupant Responses in a Friction Trip Rollover Test

2009-04-20
2009-01-0830
Objective: A friction rollover test was conducted as part of a rollover sensing project. This study evaluates vehicle and occupant responses in the test. Methods: A flat dolly carried a Saab 9-3 sedan laterally, passenger-side leading to a release point at 42 km/h (26 mph) onto a high-friction surface. The vehicle was equipped with roll, pitch and yaw gyros near the center of gravity. Accelerometers were placed at the vehicle center tunnel, A-pillar near the roof, B-pillar near the sill, suspension sub-frame and wheels. Five off-board and two on-board cameras recorded kinematics. Hybrid III dummies were instrumented for head and chest acceleration and upper neck force and moment. Belt loads were measured. Results: The vehicle release caused the tires and then wheel rims to skid on the high-friction surface. The trip involved roll angular velocities >300 deg/s at 0.5 s and a far-side impact on the driver’s side roof at 0.94 s. The driver was inverted in the far-side, ground impact.
Technical Paper

Theories, Facts and Issues About Recliner and Track Release of Front Seats in Rear Impacts

2018-04-03
2018-01-1329
Objective: This study involved a number of different tests addressing theories for recliner and track release of front seats in rear impacts. It addresses the validity of the theories. Method: Several separate test series were conducted to address claims made about recliner and track release of front seats in rear impacts. The following theories were evaluated to see the validity of the issues: 1 Recliner teeth slipping with minimal damage to the teeth 2 Recliner teeth bypass by disengaging and re-engaging under load without damaging the teeth 3 Recliner shaft bending and torque releasing the recliners 4 Track release by heel loading 5 Track release with occupant load on the seat 6 Recliner handle rotation causing recliner release 7 Double pull body block tests Results: Many of the theories were found to be uncorroborated once actual test data was available to judge the merits of the issue raised. The laboratory tests were set-up to specifically address particular issues.
Technical Paper

Rear-Seat Occupant Responses in NHTSA Rear Crash Tests

2018-04-03
2018-01-1330
This study analyzed FMVSS 301 rear impact tests with an instrumented rear-seat dummy. NHTSA conducted 15 FMVSS 301 rear crash tests with an instrumented and belted 50th Hybrid III dummy in the rear seat. In series 1, there were three repeat tests with the Jeep Liberty and two others, but no onboard camera view. In series 2, there were 8 tests with 2003-2005 MY (model year) vehicles that had rear head restraints. In series 3, there were two tests with 2004-2005 MY vehicles that did not have rear head restraints. There was an onboard camera view of the rear occupant in series 2 and 3. The dummy responses were evaluated and compared to relevant IARVs (injury assessment reference values). Based on the HRMD, the average height of the rear head restraints was 80.4 ± 3.4 cm (31.6″ ± 1.3″) above the H-point. In series 1, the delta V was 24.4 ± 2.0 km/h (15.2 ± 1.3 mph).
Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Lumbar Spine Fractures in Undercarriage Impacts: Analysis of 1997-2015 NASS-CDS

2018-04-03
2018-01-0546
Objective: This is a descriptive study of the incidence of spinal injury by crash type using NASS-CDS. It provides an understanding of impacts to the undercarriage of the vehicle and injuries to the lumbar spine by reviewing electronic cases in NASS-CDS to determine crash circumstances for fractures of the lumbar spine with undercarriage impacts. Methods: 1997-2015 NASS-CDS was evaluated for serious injury (MAIS 3 + F) to front-seat occupants by seatbelt use and crash type in 1994+ MY vehicles. Undercarriage impacts were defined by GAD1 = U without a rollover. Serious injury was defined as MAIS 3 + F. Spinal injuries AIS 3+ were separated into cervical, thoracic and lumbar regions. Weighted data was determined using ratio weight. NASS-CDS electronic cases were downloaded from NHTSA with AIS 3+ lumbar spine injuries in undercarriage impacts. Results: There were 2,160 MAIS 3 + F injured occupants in undercarriage impacts. This was 0.23% of all serious injury.
Technical Paper

Bolster Impacts to the Knee and Tibia of Human Cadavers and an Anthropomorphic Dummy

1978-02-01
780896
Knee bolsters on the lower instrument panel have been designed to control occupant kinematics during sudden deceleration. However, a wide variability in car occupant anthropometry and choice of seating posture indicates that lower-extremity contacts with the impingement bolster could predominantly load the flexed leg through the knee (acting through the femur) or through the tibia (acting through the knee joint). Potential injuries associated with these types of primary loading may vary significantly and an understanding of potential trauma mechanisms is important for proper occupant restraint.
Technical Paper

Factors Influencing Knee Restraint

1979-02-01
790322
A planar mathematical model was developed to provide means of studying factors which can influence the function of lower torso restraint via a padded lower instrument panel or knee bolster. The following factors were judged to play the most significant role: 1) initial fore-and-aft position of the seated occupant relative to the knee restraint; 2) location of the knee-to-bolster contact; 3) angular orientation of the bolster face; 4) primary axis of the bolster resisting force, 5) variations in vehicle crash parameters (e.g., toepan rotation and displacement and seat deflection); and 6) deformation characteristics of the bolster. The model of a seated occupant included radiographic and empirical data on the anatomy of the links and joints in the lower extremity.
Technical Paper

MVMA 2-D Modeling of Occupant Kinematics in Rollovers

1984-04-01
840860
This paper describes the mathematical modeling of occupant kinematics in rollover accidents using the MVMA 2-D occupant motion simulation software. What little information is available on the kinematics of vehicle occupants during rollover accidents has been obtained either after the fact by accident reconstruction or by expensive experimentally-staged events. The paper describes the use of less expensive analytical techniques to graphically illustrate the applicability of occupant motion simulation computer models to this problem.
Technical Paper

The Effect of Limiting Impact Force on Abdominal Injury: A Preliminary Study

1986-10-27
861879
This report describes a series of experiments using Hexcel(TM) to limit the impact force in lateral abdominal impacts. Two hundred fourteen (214) anesthetized New Zealand White rabbits were impacted at 5 to 15 m/s using a pneumatic impactor. Injury responses from tests with a force-limiting impact interface (94 tests) were compared with the responses from tests with a rigid impact interface (120 tests) having the same level of lateral abdominal compression. The Hexcel had a length of 3 inches, the same diameter as the rigid impactor, and crushed at a constant force (pressure level of 232 kPa (33 psi)) once deformation was initiated. The results of these tests showed that the probability of serious abdominal injury did not change significantly with the Hexcel, even though peak pressures were reduced to as little as one third of their previous values.
Technical Paper

Bounce-Overs: Fixed Object Impacts Followed by Rollovers

2004-03-08
2004-01-0334
In this study, U.S. crash data was analyzed to better understand bounce-over rollovers. Crash data was reviewed to evaluate the distribution of bounce-over crashes and injuries, initiation objects and impact locations. In passenger cars, bounce-over crashes account for 8.4% of rollovers but involve 36.2% of the seriously injured belted drivers. Most bounce-overs are initiated by contact with narrow objects such as a pole, tree or barrier, or large objects such as a ditch or embankment. Contact often occurs in the front of the vehicle. After contact, the vehicle yaws and rolls, and serious injuries are often sustained to the head. Based on field data, a laboratory test was developed to simulate a narrow object bounce-over. The test consists of towing a vehicle laterally on a fixture towards a stationary, angled barrier resting in gravel. The moving fixture is decelerated and the vehicle is released. The vehicle front impacts the edge of the barrier, simulating a narrow object impact.
Technical Paper

Rollover Crash Sensing and Safety Overview

2004-03-08
2004-01-0342
This paper provides an overview of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses as well as a bibliography of pertinent literature. Based on the 2001 Traffic Safety Facts published by NHTSA, rollovers account for 10.5% of the first harmful events in fatal crashes; but, 19.5% of vehicles in fatal crashes had a rollover in the impact sequence. Based on an analysis of the 1993-2001 NASS for non-ejected occupants, 10.5% of occupants are exposed to rollovers, but these occupants experience a high proportion of AIS 3-6 injury (16.1% for belted and 23.9% for unbelted occupants). The head and thorax are the most seriously injured body regions in rollovers. This paper also describes a research program aimed at defining rollover sensing requirements to activate belt pretensioners, roof-rail airbags and convertible pop-up rollbars.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
Technical Paper

Fatalities by Seating Position and Principal Direction of Force (PDOF) for 1st, 2nd and 3rd Row Occupants

2008-05-12
2008-01-1850
Purpose: A better understanding of rear occupant fatality risks is needed to guide the development of safety improvements for 2nd and 3rd row occupants. This study investigates fatal accidents of 1st, 2nd and 3rd row occupants by principal direction of force (PDOF), irrespective of restraint use. It determined the number of fatalities, exposure and fatality risk. Methods: 1996-2005 FARS was analyzed for occupant fatalities by seating position (1st, 2nd and 3rd row) and principal direction of force (1-12 o'clock PDOF, rollover and other/unknown). Light vehicles were included with model year 1990+. 1996-2005 NASS-CDS was similarly analyzed for occupant exposure. Fatality risk was defined as the number of fatalities in FARS for a given category divided by the exposure from NASS-CDS. Results: Ten percent (9.6%) of fatalities were to 2nd row occupants in FARS. About 2,080 deaths occur to 2nd row occupants annually. 38.4% died in rollovers and 26.8% in frontal crashes.
Technical Paper

Crash Injury Prevention: A Case Study of Fatal Crashes of Lap-Shoulder Belted Occupants

1992-11-01
922523
A case study was conducted of 123 crashes involving 144 fatally injured lap-shoulder belted front-seat occupants. The crashes occurred throughout the United States in 1985-86 and involved 97 driver and 47 right-front passenger deaths in new vehicles. A judgment was made by consensus of a safety panel on the potential for saving the victim's life by the addition of safety technology. Supplemental airbags provided the greatest potential for improving the life-saving effectiveness of current lap-shoulder belts. Overall, airbags may have prevented 12% of the belted occupant fatalities and 27% of the deaths in frontal crashes. The benefit of supplemental airbags was greater for the right-front passenger, in part, because of more females and occupants over 60 years of age in that seating position. A majority (68%) of the belted fatalities were judged unpreventable by reasonable restraint or vehicle modifications.
Technical Paper

Influence of Seatback Angle on Occupant Dynamics in Simulated Rear-End Impacts

1992-11-01
922521
In the early 1980's a series of tests was conducted simulating rear-end crashes. The tests demonstrated that a conventional automotive bucket seat adequately retains an unbelted dummy on the seat for rear-end impacts up to 6.4 m/s and 9.5 g severity. For this severity of impact the total rearward rotation of the seatback is less than 60° from the vertical and is associated with a normal acceleration of the dummy's chest into the seatback of up to 10 g. The tangential acceleration of the dummy, which may induce riding up the seat, was generally less than the normal component so that the occupant was prevented from sliding up the deflected seatback. The bucket seat provided adequate containment and control of occupant displacements for each of the initial seatback angles of 9°, 22°, and 35°.
Technical Paper

Restraint of a Belted or Unbelted Occupant by the Seat in Rear-End Impacts

1992-11-01
922522
This sled test series involved occupant loading of the seat in rear crashes of 4.3-8.3 m/s (9.6-18.5 mph). The tests were conducted in the early 1980s and involved an unbelted or lap-shoulder belted Part 572 dummy in rear and oblique rear impacts. The research is reported today to provide comparative data for the record and serves as a control benchmark for more current technologies and safety research methodologies on seat performance in rear crashes. Safety belts improved occupant retention on the seat primarily by the lap belt reducing the upward and rearward movement of the pelvis. Tests were also conducted on the mechanisms for energy absorption by seatback deflection.
Technical Paper

Thoracic Impact: New Experimental Approaches Leading to Model Synthesis

1973-02-01
730981
The following work was done in support of a continuing program to better characterize the behavior of the human chest during blunt sternal impact. Previous work on this problem has focused on determining the force-time, deflection-time, and force-deflection response of embalmed and fresh cadavers to impact by a 15 cm (6 in) diameter striker of variable mass traveling at velocities of 22.5-51 km/h (14-32 mph) and striking the sternum at the level of the fourth intercostal space. Additional questions persist concerning whether the anterior and posterior regions of the chest behave as highly damped masses or oscillate after impact, the relationship between force delivered to the surface of the body and the acceleration of the underlying regions, and the influence of air compressed in the lung on thoracic mechanics.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
X