Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine

2016-02-01
2016-28-0257
IC engines are facing two major challenges in the 21st century namely threat of fossil fuel depletion and environmental concerns. HCCI engine is an attractive solution to meet stringent emission challenges due to its capability to simultaneously reduce NOx and PM. HCCI technology can be employed with different alternative fuels without significant modifications in the existing engines. In this study, HCCI combustion was investigated using B20 (20% v/v biodiesel with diesel). Investigations were carried out on a two cylinder engine, in which one cylinder was modified to operate in HCCI mode however the other cylinder operated in conventional CI combustion mode. A dedicated fuel vaporizer was used for homogeneous fuel-air mixture preparation. The experiments were performed at three different intake charge temperatures (160°C, 180°C and 200°C) and three different EGR ratios (0%, 10% and 20% EGR) at different engine loads.
Technical Paper

CI/PCCI Combustion Mode Switching of Diesohol Fuelled Production Engine

2017-03-28
2017-01-0738
Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
Technical Paper

Performance, Emission and Combustion Characteristics of Biodiesel (Waste Cooking Oil Methyl Ester) Fueled IDI Diesel Engine

2008-04-14
2008-01-1384
Biodiesel (fatty acid methyl ester) is a non-toxic and biodegradable alternative fuel that is obtained from renewable sources. A major hurdle in the commercialization of biodiesel from virgin oil, in comparison to petroleum-based diesel, is its cost of production, primarily the raw material cost. Used cooking oils or waste cooking oils are economical sources for biodiesel production, which can help in commercialization of biodiesel. However, the products formed during cooking/frying (such as free fatty acids and various polymerized triglycerides) affect the transesterification reaction and the biodiesel properties. In present experimental investigations, wastecooking oil obtained from restaurant was used to produce biodiesel through transesterification process and the chemical kinetics of biodiesel production was studied. Biodiesel was blended with petroleum diesel in different proportions.
Technical Paper

Combustion Characteristics of Jatropha Oil Blends in a Transportation Engine

2008-04-14
2008-01-1383
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. However, several operational and durability problems of using straight vegetable oils in diesel engines are reported in the literature, caused by of their higher viscosity and low volatility compared to mineral diesel. In the present research, experiments were designed to study the effect of reducing Jatropha oil's viscosity by blending it with mineral diesel and thereby eliminating the effect of high viscosity and poor volatility on combustion characteristics of the engine. Experimental investigations have been carried out to examine the combustion characteristics of an indirect injection transportation diesel engine running with diesel, and jatropha oil blends with diesel.
Technical Paper

Performance Evaluation of a Biodiesel (Rice Bran Oil Methyl Ester) Fuelled Transport Diesel Engine

2005-04-11
2005-01-1730
This experimental study was undertaken to investigate the use of vegetable oil derivatives to substitute mineral diesel fuel. Straight vegetable oils pose some problems like injector coking, carbon deposits etc., when used as a fuel in an engine. These problems are due to high viscosity, low volatility and polyunsaturated character of vegetable oils. Transesterified vegetable oil derivative called “biodiesel” appear to be most convenient way of utilizing vegetable oil as a substitute fuel in diesel engines. In present investigation, rice bran oil (non-edible) was transesterified to methyl ester and reaction conditions for transeterifcation process for rice bran oil were optimized. Various properties like viscosity, density, flash point of the biodiesel thus prepared are comparable to diesel and found to be in acceptable range as per ASTM norms (ASTM D6751). Experimental investigations were carried out on a four stroke, four cylinders, transportation DI diesel engine.
Technical Paper

Evaluation of Steel Cap Piston for Upgradation of Diesel Electric Locomotives for Indian Railways

2005-04-11
2005-01-1645
This paper deals with the evaluation of steel cap pistons for up-gradation of diesel electric locomotives for Indian Railways. These engines are four stroke, medium speed compression ignition engines (CR 12.5: 1) with output of 121 kW per cylinder on series 1 and 167 kW per cylinder on series 2. The series 1 engine uses single piece aluminum pistons, with rating of 0.295 kW/cm2 of piston crown area. A higher version of the series 1 engine with higher fuel efficiency and improvement in lube oil consumption was developed. As part of this improvement program, a composite steel cap piston with forged aluminum skirt was used. The whole engine up-gradation kit including the higher capacity turbocharger, higher fuel delivery pressure fuel pump, modified cam shaft, larger after-cooler along with the steel cap piston were evaluated for performance.
Technical Paper

Emission and Combustion Characteristics of Vegetable Oil (Jatropha curcus) Blends in an Indirect Ignition Transportation Engine

2008-01-09
2008-28-0034
The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from vegetable oils present promising “greener” substitutes for fossil fuels. Vegetable oils due to their agricultural origin are able to reduce net CO2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines reported, which are because of their higher viscosity and low volatility compared to mineral diesel. In the present research, experiments were designed to study the effect of reducing Jatropha oil's viscosity by blending with mineral diesel, thereby eliminating its effect on combustion characteristics of the engine. In the present experimental research, vegetable oil (Jatropha Curcus) was used as substitute fuel.
Technical Paper

An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry

2016-02-01
2016-28-0006
Gasoline Direct Injection (GDI) engine is known for its higher power and higher thermal efficiency. Researchers are steadily determining and resolving the problems of fuel injection in a GDI engine. In order to meet the stringent emission norms such as PM and NOx emitted by a GDI engine, it is necessary to investigate the microscopic spray characteristics and fuel-air mixing process. This paper aims to share the fundamental knowledge of the interacting mixture preparation mechanisms at the wide range of fuel injection pressures. The investigations were carried out at five different fuel injection pressures viz: 40, 80, 120, 160, 200 bar, for 24 mg fuel per injection. A high speed CCD camera was used to determine the macroscopic spray characteristics of the GDI injector. It was found that spray penetration length increased with increasing fuel injection pressure. Phase Doppler Interferometry (PDI) was used to determine the droplet size and droplet velocity for different test fuels.
Technical Paper

Experimental Investigation on Intake Air Temperature and Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Homogeneous Charge Compression Ignition Engine

2011-04-12
2011-01-1183
Due to the increasingly stricter emission legislations and growing demand for lower fuel consumption, there have been significant efforts to improve combustion efficiency, while satisfying the emission requirements. Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI, fully homogeneous charge HCCI combustion can be realized only in a limited operating range. Control of HCCI engines to obtain the desirable operation requires understanding of how different charge variables influence the cyclic variations in HCCI combustion. Under certain operating conditions, HCCI engines exhibit large cyclic variations in ignition timing. Cyclic variability ranging from stochastic to deterministic patterns can be observed. One important design goal for engine development is to minimize cyclic variability.
Technical Paper

Oxidation Stability of Biodiesel Produced from Non-Edible Oils of African Origin

2011-04-12
2011-01-1202
Mono alkyl esters of long-chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, also known as biodiesel are well positioned to replace mineral diesel. The outstanding technical problem with biodiesel is that it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. The chemical reactivity of esters can therefore be divided into oxidative and thermal instability, which can be determined by the amount and configuration of the olefinic unsaturation in the fatty acid chains. Many of the plant-derived fatty oils contain polyunsaturated fatty acids that are more prone to oxidation. Increasing production of biodiesel from vegetable oils (edible) places strain on food production, availability and price and leads to food versus fuel conflict.
Journal Article

Effect of Start of Injection on the Particulate Emission from Methanol Fuelled HCCI Engine

2011-12-06
2011-01-2408
New combustion concepts developed in internal combustion engines such as homogeneous charge compression ignition (HCCI) have attracted serious attention due to the possibilities to simultaneously achieve higher efficiency and lower emissions, which will impact the environment positively. The HCCI combustion concept has potential of ultra-low NOX and particulate matter (PM) emission in comparison to a conventional gasoline or a diesel engine. Environmental Legislation Agencies are becoming increasingly concerned with particulate emissions from engines because the health and environmental effects of particulates emitted are now known and can be measured by sophisticated instruments. Particulate emissions from HCCI engines have been usually considered negligible, and the measurement of mass emission of PM from HCCI combustion systems shows their negligible contribution to PM mass. However some recent studies suggest that PM emissions from HCCI engines cannot be neglected.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
Technical Paper

Novel Methodology to Utilise Neem (Azadirachta Indica) Oil in a Direct Injection Compression Ignition Engine: Performance and Emissions Characterization

2009-12-13
2009-28-0039
The world energy demand has witnessed uncertainties in two dimensions. The scarcity and depletion of conventional petroleum sources are causes of great concern worldwide. Combustion of fossil fuels has led to unprecedented rise in the global CO2 level, leading to global warming. Therefore, efforts are underway in several countries to search for suitable alternative fuels that are environment friendly. Vegetable oils of non-edible nature are such alternative fuels, which can form part of potential solution. Vegetable oils, due to their agricultural origin, are able to reduce CO2 emissions to the atmosphere along with import substitution of petroleum products In the present research, experiment were designed to study the effect of reducing Neem oil's high viscosity by increasing the fuel temperature and thereby its effect on combustion and emission characteristics of the engine.
Technical Paper

Particulate Characterization of Biodiesel Fuelled Compression Ignition Engine

2009-12-13
2009-28-0018
Environmental concerns have increased significantly world over in the past decade. Regulatory agencies are becoming increasingly concerned with particulate emissions as the health and environmental effects are getting understood better due to rapid development in instrumentation. Biodiesel is one of the most promising alternative diesel fuels, which is getting global acceptability among the automotive/ engine manufactures as well as users due to numerous benefits it offers over the conventional diesel. While much of literature is available on particulate emitted by diesel fuelled engine, little is known by particulate emissions from biodiesel fuelled compression ignition (CI) engine. This study concentrates on the characterization of particulate emissions from mineral diesel vis-à-vis biodiesel (B100) and its optimum blend (20%, B20) with mineral diesel.
Technical Paper

Field Trials of Biodiesel (B100) and Diesel Fuelled Common Rail Direct Injection Euro-III Compliant Sports Utility Vehicles in Indian Conditions

2008-01-09
2008-28-0077
Biodiesel is being explored as a sustainable renewable fuel for vehicles in India due to mounting foreign exchange expenditure to import crude petroleum. Significant amount of research and development work is being undertaken in India to investigate various aspects of biodiesel utilisation in different types of engines. This study is an effort to jointly investigate the use of biodiesel (B100) in an unmodified BS-III compliant sports utility vehicle (SUV) by a consortium of academia (IIT Kanpur) and Industry (M&M) to realistically assess whether biodiesel is compatible with modern engine technology vehicles. Two identical vehicles were operated in tandem using biodiesel (B100) and mineral diesel (B00) respectively for 30,000 kilometers in field conditions. The lubricating oil samples were collected and detailed analysis for assessing the comparative effect of new fuel (B100) vis-à-vis mineral diesel was carried out.
Technical Paper

Combustion and Emission Behavior of Ethanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

2008-01-09
2008-28-0064
The Homogeneous charge compression ignition (HCCI) is the third alternative for the combustion in the reciprocating engine. HCCI a hybrid of well-known spark ignition (SI) and compression ignition (CI) engine concepts and has potential of combining the best features of both. A two cylinder, four stroke, direct injection diesel engine was modified to operate one cylinder on the compression ignition by detonation of homogeneous mixture of ethanol and air. The homogeneous mixture of the charge is prepared by port injection of ethanol in the preheated Intake air. This study presents results of experimental investigations of HCCI combustion of ethanol at intake air temperature of 120°C and at different air-fuel ratios. In this paper, the combustion parameters, pressure time history, rate of pressure rise, rate of heat release, mean temperature history in the combustion chamber is analyzed and discussed.
Technical Paper

Ricebran Oil Biodiesel's Performance, Emission and Endurance Test on a CIDI Transport Engine

2008-01-09
2008-28-0066
Increased environmental awareness and depletion of resources are driving industry to develop alternative fuels that are environmentally more acceptable. Fatty acids esters (biodiesel) are known to be good alternative fuels. Due to economic reasons, the use of cheap raw materials for biodiesel production is preferred. In this case, ricebran oil, non-edible grade is used. Base catalyzed transesterification of ricebran oil is investigated and process parameters for ricebran biodiesel production are optimized. Various properties like viscosity, density, flash point, calorific value of biodiesel thus prepared are characterized as per ASTM D6751 and found comparable to mineral diesel. Steady state engine dynamometer test at 1800 rpm has been carried out to evaluate the performance and emission characteristics of a medium duty transportation DI diesel engine. Emission tests with all the fuel blends have also been carried out using European 13 MODE test (ECE R49).
Technical Paper

Measurement of Lubricating Oil Film Thickness between Piston Ring -liner Interface in an Engine Simulator

2008-01-09
2008-28-0071
The interface between the piston rings and cylinder liner play an important role in total frictional losses and mechanical wear of internal combustion engine and is increasingly coming under scrutiny as legislated particulate emission standards are getting more and more stringent. The capacitance method is used for measurement of minimum oil film thickness between piston ring and liner interface. Measurement of capacitance formed between the piston ring and a probe mounted flush in the liner provides an accurate means of determining the oil film thickness provided that the region between the probe and liner is flooded with oil and dielectric constant of the oil is known. This paper presents detailed design and measurement of lubricating oil film thickness using capacitive micro sensor in a non-firing engine simulator. Lubricating oil film thickness was found to vary between 0.2μm to 8μm in the non firing engine simulator.
Journal Article

Experimental Investigations of the Tribological Properties of Lubricating Oil from Biodiesel Fuelled Medium Duty Transportation CIDI Engine

2008-04-14
2008-01-1385
Biodiesel is mono alkyl ester derived from vegetable oils through transesterification reaction and can be used as an alternative to mineral diesel. In the present research, methyl ester of rice-bran oil (ROME) is produced through transesterification of rice-bran oil using methanol in presence of sodium hydroxide (NaOH) catalyst. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized and found comparable to diesel. On the basis of previous research for performance, emission and combustion characteristics, a 20% blend of ROME (B20) was selected as optimum biodiesel blend for endurance test. Endurance test of 100 hours was conducted on a medium duty direct injection transportation diesel engine. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel and engine fuelled with 20% biodiesel blend.
Technical Paper

Development And Characterization Of Biodiesel From Non-Edible Vegetable Oils Of Indian Origin

2004-01-16
2004-28-0079
Increased environmental awareness and depletion of fossil fuel resources are driving industry to develop alternative fuels that are environmentally more acceptable. Vegetable oils are potential alternative fuels. Vegetable oils in India are produced from numerous oil-seed crops. While all vegetable oils have high energy content, most require some processing to ensure safe usage in internal combustion engines. Most detrimental properties of oils are its high viscosity, low volatility and polyunsaturated character. The most widely used method is to convert vegetable oils into biodiesel. Biodiesel fuels are primary esters, which are produced by transesterifcation of vegetable oils. Several vegetable oil esters have been investigated so far in different parts of the world and found suitable to be used in diesel engines.
X