Refine Your Search

Topic

Search Results

Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

2013-04-08
2013-01-0683
This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
Journal Article

Assessment of the Simulated Injury Monitor (SIMon) in Analyzing Head Injuries in Pedestrian Crashes

2012-04-16
2012-01-0569
Objectives. Examination of head injuries in the Pedestrian Crash Data Study (PCDS) indicates that many pedestrian head injuries are induced by a combination of head translation and rotation. The Simulated Injury Monitor (SIMon) is a computer algorithm that calculates both translational and rotational motion parameters relatable head injury. The objective of this study is to examine how effectively HIC and three SIMon correlates predict the presence of either their associated head injury or any serious head injury in pedestrian collisions. Methods. Ten reconstructions of actual pedestrian crashes documented by the PCDS were conducted using a combination of MADYMO simulations and experimental headform impacts. Linear accelerations of the head corresponding to a nine-accelerometer array were calculated within the MADYMO model's head simulation.
Technical Paper

A Methodology for Validating Vehicle Dynamics Simulations

1990-02-01
900128
This paper presents a methodology for validating vehicle stability and control computer simulations. Validation is defined as showing that, within some specified operating range of the vehicle, a simulation's predictions of a vehicle's responses agree with the actual measured vehicle's responses to within some specified level of accuracy. The method uses repeated experimental runs at each test condition to generate sufficient data for statistical analyses. The acquisition and reduction of experimental data, and the processing path for simulation data, are described. The usefulness of time domain validation for steady state and slowly varying transients is discussed. The importance of frequency domain validation for thoroughly validating a simulation is shown. Both qualitative and quantitative methods for the comparison of the simulation predictions with the actual test measurements are developed.
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Simulation Results from a Model of a Tractor Trailer Vehicle Equipped with Roll Stability Control

2010-04-12
2010-01-0098
In 2007, a software model of a Roll Stability Control (RSC) system was developed based on test data for a Volvo tractor at NHTSA's Vehicle Research and Test Center (VRTC). This model was designed to simulate the RSC performance of a commercially available Electronic Stability Control (ESC) system. The RSC model was developed in Simulink and integrated with the available braking model (TruckSim) for the truck. The Simulink models were run in parallel with the vehicle dynamics model of a truck in TruckSim. The complete vehicle model including the RSC system model is used to simulate the behavior of the actual truck and determine the capability of the RSC system in preventing rollovers under different conditions. Several simulations were performed to study the behavior of the model developed and to compare its performance with that of an actual test vehicle equipped with RSC.
Technical Paper

A Validation Study of Vehicle Dynamics Simulations for Heavy Truck Handling Maneuvers

2001-03-05
2001-01-0139
This paper deals with the ongoing efforts at The Vehicle Research and Test Center (VRTC) in East Liberty, Ohio in promoting the safe operation of heavy trucks. The associated research evaluated two vehicle dynamics simulations for their accuracy in predicting tractor-trailer handling metrics. The goals of the research were threefold: 1. Establish a generic “benchmark” parametric data set for the three-axle truck/two-axle trailer vehicle 2. Demonstrate the accuracy of experimental data that was collected for the tractor-trailer vehicle of this study 3. Demonstrate the accuracy of two vehicle simulations by comparing their predicted responses to experimentally observed vehicle responses and metrics.
Technical Paper

A Study of Jackknife Stability of Class VIII Vehicles with Multiple Trailers with ABS Disc/Drum Brakes

2004-03-08
2004-01-1741
This study investigated the jackknife stability of Class VIII double tractor-trailer combination vehicles that had mixed braking configurations between the tractor and trailers and dolly (e.g. ECBS disc brakes on the tractor and pneumatic drum brakes on the trailers and dolly). Brake-in-turn maneuvers were performed with varying vehicle loads and surface conditions. Conditions with ABS ON for the entire vehicle (and select-high control algorithm on the trailers and dolly) found that instabilities (i.e. lane excursions and/or jackknifes) were exhibited under conditions when the surface friction coefficient was 0.3. It was demonstrated that these instabilities could be avoided while utilizing a select-low control algorithm on the trailers and dolly. Simulation results with the ABS OFF for the tractor showed that a tractor equipped with disc brakes had greater jackknife stability.
Technical Paper

Enhancement of Vehicle Dynamics Model Using Genetic Algorithm and Estimation Theory

2003-03-03
2003-01-1281
A determination of the vehicle states and tire forces is critical to the stability of vehicle dynamic behavior and to designing automotive control systems. Researchers have studied estimation methods for the vehicle state vectors and tire forces. However, the accuracy of the estimation methods is closely related to the employed model. In this paper, tire lag dynamics is introduced in the model. Also application of estimation methods in order to improve the model accuracy is presented. The model is developed by using the global searching algorithm, a Genetic Algorithm, so that the model can be used in the nonlinear range. The extended Kalman filter and sliding mode observer theory are applied to estimate the vehicle state vectors and tire forces. The obtained results are compared with measurements and the outputs from the ADAMS full vehicle model. [15]
Technical Paper

The Use of Single Moving Vehicle Testing to Duplicate the Dynamic Vehicle Response From Impacts Between Two Moving Vehicles

2002-03-04
2002-01-0558
The Federal Side Impact Test Procedure prescribed by FMVSS 214, simulates a central, orthogonal intersection collision between two moving vehicles by impacting the side of the stationary test vehicle with a moving test buck in a crabbed configuration. While the pre- and post-impact speeds of the vehicles involved in an accident can not be duplicated using this method, closing speeds, vehicle damage, vehicle speed changes and vehicle accelerations can be duplicated. These are the important parameters for the examination of vehicle restraint system performance and the prediction of occupant injury. The acceptability of this method of testing is not as obvious for the reconstruction of accidents where the impact is non-central, or the angle of impact is not orthogonal. This paper will examine the use of crash testing with a single moving vehicle to simulate oblique or non-central collisions between two moving vehicles.
Technical Paper

Kinematic Suspension Model Applicable to Dynamic Full Vehicle Simulation

2003-03-03
2003-01-0859
Computer simulations are popular for modeling vehicle system dynamics. However, further refinement of the vehicle dynamic model is required for extensive use in the automotive industry. In this paper, the model refining procedure is illustrated by developing reliable kinematic models verified with laboratory test results; instrument test data; and a mathematical optimization method. More specifically, simple kinematic models are developed for reduced computation times using ADAMS. They are tuned by the gradient-based optimization technique using the results from a laboratory testing facility, which includes the compliance effect in order to use the kinematic models in dynamic simulations. Also the Magic Formula tire model is developed using the optimization method and tire property data for the STI (Systems Technology, Incorporated) tire model.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

Establishing Occupant Response Metrics on a Roll Simulator

2012-04-16
2012-01-0099
This paper presents the results of an in-depth study of the measurement of occupant kinematic response on the S-E-A Roll Simulator. This roll simulator was built to provide an accurate and repeatable test procedure for the evaluation of occupant protection and restraint systems during roll events within a variety of occupant compartments. In the present work this roll simulator was utilized for minimum-energy, or threshold type, rollover events of recreational off-highway vehicles (ROVs). Input profiles for these tests were obtained through a separate study involving autonomous full vehicle tests [1]. During simulated roll events anthropomorphic test device (ATD) responses were measured using on-board high speed video, an optical three-dimensional motion capture system (OCMS) and an array of string potentiometers.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Modeling of Rollover Sequences

1993-11-01
931976
This paper will illustrate the development of the modeling of rollover sequences. During the past few years, a lot of research has been focused on the rollover propensity of vehicles. As to what happens after the vehicle rolls over, attention is only paid to occupant kinematics and occupant injury. Some simple questions such as how many rolls in the rollover are not answered unless a rollover test is run. The rollover sequences including roll number, roll speed and roll distance are very important to the accident reconstructionists as well as design engineers. Since the cost for running a rollover test is so high today, it is very economic and time-efficient to obtain the preliminary results from a mathematical model. Roll number and roll distance versus time are to be obtained through the mathematical model which is based on several rollover tests, vehicle inertia parameters, and the Coulomb friction, a non-linear term in the equation.
Technical Paper

Developments in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement

1995-02-01
950356
For some vehicle dynamics applications, an estimate of a vehicle's center of gravity (cg) height and mass moments of inertia can suffice. For other applications, such as vehicle models and simulations used for vehicle development, these values should be as accurate as possible. This paper presents several topics related to inertial parameter estimation and measurement. The first is a simple but reliable method of estimating vehicle mass moment of inertia values from data such as the center of gravity height, roof height, track width, and other easily measurable values of any light road vehicle. The second is an error analysis showing the effect, during a simple static cg height test, of vehicle motion (relative to the support system) on the vehicle's calculated cg height. A method of accounting for this motion is presented. Similarly, the effects of vehicle motion are analyzed for subsequent mass moment of inertia tests.
Technical Paper

Modeling of Dynamic Characteristics of Tire Lateral and Longitudinal Force Responses to Dynamic Inputs

1995-02-01
950314
This paper presents the development of a tire model for use in the simulation of vehicle dynamics. The model was developed to predict tire lateral and longitudinal force responses to dynamic inputs. In this new tire model, the contact patch of a tire is lumped into a number of elements to study the dynamic behavior of the displacement of the tire contact patch in the lateral and longitudinal directions. For each displacement, a differential equation governing the dynamic behavior of the displacement to the dynamic inputs is derived. Based on the differential equations for the lateral and longitudinal displacements, difference equations are derived for the purpose of simulating tire output responses. Since system parameters, such as mass, damping and stiffness, in the difference equations are unknown, estimation of system parameters is performed using the differential equations and experimental data measured for this research.
Technical Paper

Parameter Measurement and Development of a NADSdyna Validation Data Set for a 1994 Ford Taurus

1997-02-24
970564
This paper discusses the development of a 1994 Ford Taurus vehicle model for the National Advanced Driving Simulator's planned vehicle dynamics simulation, NADSdyna. The front and rear suspensions of the Taurus are modeled using recursive rigid body dynamics formulations. To complement vehicle dynamics, subsystems models that include steering, braking, and tire forces are included. These models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation. The realism of a particular formulation depend heavily on how the parameters are obtained from the physical system. Therefore, the development of a data set for a particular model is as important as the model itself. The methodology for generating the Taurus data set is presented. The power train model is not yet included, so the simulation is run with the vehicle either at constant speed or decelerating.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
X