Refine Your Search

Topic

Search Results

Journal Article

Analyzing the Energy Consumption Variation during Chassis Dynamometer Testing of Conventional, Hybrid Electric, and Battery Electric Vehicles

2014-04-01
2014-01-1805
Production vehicles are commonly characterized and compared using fuel consumption (FC) and electric energy consumption (EC) metrics. Chassis dynamometer testing is a tool used to establish these metrics, and to benchmark the effectiveness of a vehicle's powertrain under numerous testing conditions and environments. Whether the vehicle is undergoing EPA Five-Cycle Fuel Economy (FE), component lifecycle, thermal, or benchmark testing, it is important to identify the vehicle and testing based variations of energy consumption results from these tests to establish the accuracy of the test's results. Traditionally, the uncertainty in vehicle test results is communicated using the variation. With the increasing complexity of vehicle powertrain technology and operation, a fixed energy consumption variation may no longer be a correct assumption.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

The Measured Impact of Vehicle Mass on Road Load Forces and Energy Consumption for a BEV, HEV, and ICE Vehicle

2013-04-08
2013-01-1457
The U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy initiated a study that conducted coastdown testing and chassis dynamometer testing of three vehicles, each at multiple test weights, in an effort to determine the impact of a vehicle's mass on road load force and energy consumption. The testing and analysis also investigated the sensitivity of the vehicle's powertrain architecture (i.e., conventional internal combustion powertrain, hybrid electric, or all-electric) on the magnitude of the impact of vehicle mass. The three vehicles used in testing are a 2012 Ford Fusion V6, a 2012 Ford Fusion Hybrid, and a 2011 Nissan Leaf. Testing included coastdown testing on a test track to determine the drag forces and road load at each test weight for each vehicle. Many quality measures were used to ensure only mass variations impact the road load measurements.
Journal Article

Analysis of Input Power, Energy Availability, and Efficiency during Deceleration for X-EV Vehicles

2013-04-08
2013-01-1473
The recovery of braking energy through regenerative braking is a key enabler for the improved efficiency of Hybrid Electric Vehicles, Plug-in Hybrid Electric, and Battery Electric Vehicles (HEV, PHEV, BEV). However, this energy is often treated in a simplified fashion, frequently using an overall regeneration efficiency term, ξrg [1], which is then applied to the total available braking energy of a given drive-cycle. In addition to the ability to recapture braking energy typically lost during vehicle deceleration, hybrid and plug-in hybrid vehicles also allow for reduced or zero engine fueling during vehicle decelerations. While regenerative braking is often discussed as an enabler for improved fuel economy, reduced fueling is also an important component of a hybrid vehicle's ability to improve overall fuel economy.
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

Efficiency-Optimized Operating Strategy of a Supercharged Hydrogen-Powered Four-Cylinder Engine for Hybrid Environments

2007-07-23
2007-01-2046
As an energy carrier, hydrogen has the potential to deliver clean and renewable power for transportation. When powered by hydrogen, internal combustion engine technology may offer an attractive alternative to enable the transition to a hydrogen economy. Port-injected hydrogen engines generate extremely low emissions and offer high engine efficiencies if operated in a lean combustion strategy. This paper presents experimental data for different constant air/fuel ratio engine combustion strategies and introduces variable air/fuel ratio strategies for engine control. The paper also discusses the shift strategy to optimize fuel economy and contrasts the different engine control strategies in the conventional vehicle environment. The different strategies are evaluated on the urban driving cycle, then engine behaviors are explained and fuel economy is estimated. Finally, the paper projects the potential of hybridization and discusses trends in powertrain cycle efficiencies.
Technical Paper

Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle

1998-02-23
981133
One of the most widely used computer simulation tools for hybrid electric vehicles (HEVs) is the ADvanced VehIcle SimulatOR (ADVISOR) developed by the National Renewable Energy Laboratory. The capability to quickly perform parametric and sensitivity studies for specific vehicles is a unique and invaluable feature of ADVISOR. However, no simulation tool is complete without being validated against measured vehicle data to insure the reliability of its predictions. This paper details the validation of ADVISOR using data from the Virginia Tech FutureCar Challenge Lumina, a series HEV. The modeling process is discussed in detail for each of the major components of the hybrid system: transmission; electric motor and inverter; auxiliary power unit (fuel and emissions); batteries; and miscellaneous vehicle parameters. The integration of these components into the overall ADVISOR model is also described. The results of the ADVISOR simulations are then explained.
Technical Paper

Drive Cycle Fuel Consumption Variability of Plug-In Hybrid Electric Vehicles Due to Aggressive Driving

2009-04-20
2009-01-1335
Previous studies and on-road driving by consumers have shown that Hybrid Electric Vehicle fuel economy is very dependent on driver demand in both vehicle speed and vehicle acceleration [1]. The emerging technology of Plug-In Hybrid Vehicles (PHEV) may prove to also be more sensitivity to aggressive driver demand as compared to conventional internal combustion engine vehicles. This is due to the exceptional ability of the PHEV to minimize fuel consumption at mid to low power levels by the significant use of electric propulsion which enables engine downsizing. As vehicle speed and acceleration increase so does the power demand on the powertrain. The fuel consumption is directly affected by this increase in power demand level. To examine the fuel consumption impact of changing driver characteristics on PHEV’s, testing is conducted on two vehicles (parallel PHEV and power-split PHEV) on a four wheel chassis dynamometer at Argonne’s Advanced Powertrain Research Facility.
Technical Paper

Vehicle Inertia Impact on Fuel Consumption of Conventional and Hybrid Electric Vehicles Using Acceleration and Coast Driving Strategy

2009-04-20
2009-01-1322
In the past few years, the price of petroleum based fuels, especially vehicle fuels such as gasoline and diesel, have been increasing at a significant rate. Consequently, there is much more consumer interest related to reducing fuel consumption of conventional and hybrid electric vehicles (HEVs). The “pulse and glide” (PnG) driving strategy is first applied to a conventional vehicle to quantify the fuel consumption benefits when compared to steady state speed (cruising) conditions over the same time and distance. Then an HEV is modeled and tested to investigate if a hybrid system can further reduce fuel consumption with the proposed strategy. Note that the HEV used in this study has the advantage that the engine can be automatically shut off below a certain speed (∼40 mph, 64 kph) at low loads, however a driver must shut off the engine manually in a conventional vehicle to apply this driving strategy.
Technical Paper

A Modular Automotive Hybrid Testbed Designed to Evaluate Various Components in the Vehicle System

2009-04-20
2009-01-1315
The Modular Automotive Technology Testbed (MATT) is a flexible platform built to test different technology components in a vehicle environment. This testbed is composed of physical component modules, such as the engine and the transmission, and emulated components, such as the energy storage system and the traction motor. The instrumentation on the tool enables the energy balance for individual components on drive cycles. Using MATT, a single set of hardware can operate as a conventional vehicle, a hybrid vehicle and a plug-in hybrid vehicle, enabling direct comparison of petroleum displacement for the different modes. The engine provides measured fuel economy and emissions. The losses of components which vary with temperature are also measured.
Technical Paper

Prospects on Fuel Economy Improvements for Hydrogen Powered Vehicles

2008-10-06
2008-01-2378
Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered.
Technical Paper

Degree of Hybridization Modeling of a Fuel Cell Hybrid Electric Sport Utility Vehicle

2001-03-05
2001-01-0236
An ADVISOR model of a large sport utility vehicle with a fuel cell / battery hybrid electric drivetrain is developed using validated component models. The vehicle mass, electric traction drive, and total net power available from fuel cells plus batteries are held fixed. Results are presented for a range of fuel cell size from zero (pure battery EV) up to a pure fuel cell vehicle (no battery storage). The fuel economy results show that some degree of hybridization is beneficial, and that there is a complex interaction between the drive cycle dynamics, component efficiencies, and the control strategy.
Technical Paper

Degree of Hybridization Modeling of a Hydrogen Fuel Cell PNGV-Class Vehicle

2002-06-03
2002-01-1945
An ADVISOR model of a PNGV-class (80 mpg) vehicle with a fuel cell / battery hybrid electric drivetrain is developed using validated component models. The vehicle mass, electric traction drive, and total net power available from fuel cells plus batteries are held fixed. Results are presented for a range of fuel cell size from zero (pure battery EV) up to a pure fuel cell vehicle (no battery storage). The fuel economy results show that some degree of hybridization is beneficial, and that there is a complex interaction between the drive cycle dynamics, component efficiencies, and the control strategy.
Technical Paper

Design and Integration Challenges for a Fuel Cell Hybrid Electric Sport Utility Vehicle

2002-03-04
2002-01-0095
Large sport utility vehicles have relatively low fuel economy, and thus a large potential for improvement. One way to improve the vehicle efficiency is by converting the drivetrain to hydrogen fuel cell power. Virginia Tech has designed a fuel cell hybrid electric vehicle based on converting a Chevrolet Suburban into an environmentally friendly truck. The truck has two AC induction drive motors, regenerative braking to capture kinetic energy, a compressed hydrogen fuel storage system, and a lead acid battery pack for storing energy. The fuel cell hybrid electric vehicle emits only water from the vehicle. The fuel cell stacks have been sized to make the 24 mpg (gasoline equivalent) vehicle charge sustaining, while maintaining the performance of the stock vehicle. The design and integration challenges of implementing these systems in the vehicle are described.
Technical Paper

Cold Start Fuel Economy and Power Limitations for a PEM Fuel Cell Vehicle

2003-03-03
2003-01-0422
Fuel cells are being considered for transportation primarily because they have the ability to increase vehicle energy efficiency and significantly reduce or eliminate tailpipe emissions. A proton exchange membrane fuel cell is an electrochemical device for which the operational characteristics depend heavily upon temperature. Thus, it is important to know how the thermal design of the system affects the performance and efficiency of a fuel cell vehicle. More specifically, this work addresses issues of the initial thermal transient known to the automotive community as “cold start” effects for a direct hydrogen fuel cell system. Cold start effects play a significant role in power limitations in a fuel cell vehicle, and may require hybridization (batteries) to supplement available power. The results include a comparison of cold-start and hot-start fuel cell power, efficiency and fuel economy for a hybrid fuel cell vehicle.
Technical Paper

Investigating Possible Fuel Economy Bias Due To Regenerative Braking in Testing HEVs on 2WD and 4WD Chassis Dynamometers

2005-04-11
2005-01-0685
Procedures are in place for testing emissions and fuel economy for virtually every type of light-duty vehicle with a single-axle chassis dynamometer, which is why nearly all emissions test facilities use single-axle dynamometers. However, hybrid electric vehicles (HEVs) employ regenerative braking. Thus, the braking split between the driven and non-driven axles may interact with the calculation of overall efficiency of the vehicle. This paper investigates the regenerative braking systems of a few production HEVs and provides an analysis of their differences in single-axle (2WD) and double-axle (4WD) dynamometer drive modes. The fuel economy results from 2WD and 4WD operation are shown for varied cycles for the 2000 Honda Insight, 2001 Toyota Prius, and the 2004 Toyota Prius. The paper shows that there is no evidence that a bias in testing an HEV exists because of the difference in operating the same hybrid vehicle in the 2WD and 4WD modes.
Technical Paper

Design and Development Process for the Equinox REVLSE E85 Hybrid Electric Vehicle

2006-04-03
2006-01-0514
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2005 - 2007 Challenge X advanced technology vehicle competition series, sponsored by General Motors Corporation, the U.S. Department of Energy, and Argonne National Lab. This report documents the Equinox REVLSE (Renewable Energy Vehicle, the Larsen Special Edition) design and how it meets the Challenge X goals. The design process, Vehicle Technical Specifications (VTS), system components, control strategy, model validation, vehicle balance, and the Challenge X Vehicle Development Process (XVDP) are defined and explained. The selected Split Parallel Architecture (SPA) E85-fueled hybrid vehicle powertrain design can meet the performance, emissions and fuel economy goals of Challenge X, while reducing petroleum use by 80 %.
Technical Paper

Systems Integration and Performance Issues in a Fuel Cell Hybrid Electric Vehicle

2000-03-06
2000-01-0376
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) has integrated a proton exchange membrane fuel cell as the auxiliary power unit of a series hybrid design to produce a highly efficient zero-emission vehicle. A 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, carries this advanced powertrain, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell supplies the average power demand and to sustain the battery pack state-of-charge within a 40-80% window. To optimize system efficiency, a load-following strategy controls the fuel cell power level. The vehicle weighed 2000kg (4400lb) and achieved a combined city/highway fuel economy of 9L/100 km or 26 mpgge (miles per gallon gasoline equivalent).
Technical Paper

Integration of Fuel Cell Technology into a Hybrid Electric Vehicle

2000-03-06
2000-01-0592
The Virginia Tech Hybrid Electric Vehicle Team (HEVT) has integrated a proton exchange membrane (PEM) fuel cell as the auxiliary power unit (APU) of a series hybrid design to produce a highly efficient zero-emission vehicle (ZEV). This design is implemented in a 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell is sized to supply the average power demand and to sustain the battery pack state-of-charge (SOC) within a 40-80% window. To optimize system efficiency, the fuel cell is driven with a load-following control strategy. The vehicle is predicted to achieve a combined city/highway fuel economy of 4.3 L/100 km or 51 mpgge (miles per gallon gasoline equivalent).
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
X