Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Standard

A GUIDE TO THE DEVELOPMENT OF A GROUND STATION FOR ENGINE CONDITION MONITORING

1994-02-01
HISTORICAL
AIR4175
An effective ground station is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design. Unlike on-board processing systems which principally use data to indicate when engine maintenance is required, ground stations offer much greater processing power to analyse and manipulate EMS data more comprehensively for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements which will determine the basic design of a ground station, including the interfaces with other maintenance or logistics systems. A brief discussion is also included on some of the more recent advances in EMS ground station technology which have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines. Finally, this document addresses the program management requirements associated with the initial development and on-going support of a ground station.
Standard

A Guide to the Development of a Ground Station for Engine Condition Monitoring

2005-02-16
HISTORICAL
AIR4175A
An effective GSS is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design, including asset management. Unlike the on-board part of the EMS which principally uses real time data to indicate when engine maintenance is required, a GSS can offer much greater processing power to comprehensively analyze and manipulate EMS data for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements used to determine the basis design of a GSS, including the interfaces with other maintenance or logistic systems. A brief discussion is also included on some of the more recent advances in GSS technology that have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines.
Standard

A GUIDE TO AIRCRAFT TURBINE ENGINE VIBRATION MONITORING SYSTEMS

1992-03-10
HISTORICAL
AIR1839A
This Aerospace Information Report (AIR) is a general overview of typical airborne vibration monitoring (AVM) systems with an emphasis on system hardware design considerations. It describes AVM systems currently in use. The purpose of this AIR is to provide information and guidance for the selection, installation, and use of AVM systems and their elements. This AIR is not intended as a legal document but only as a technical guide.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2001-07-01
HISTORICAL
AIR1839B
This SAE Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2008-02-16
HISTORICAL
AIR1839C
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2015-12-20
CURRENT
ARP1839
This Aerospace Recommended Practice (ARP) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174. This ARP also contains the essential elements of AS8054 which remain relevant and which have not been incorporated into Original Equipment Manufacturers (OEM) specifications.
Standard

AIRCRAFT GAS TURBINE ENGINE MONITORING SYSTEM GUIDE

1981-04-30
HISTORICAL
ARP1587
This ARP is a system guide for Engine Monitoring System (EMS) definition and implementation. This keystone document addresses EMS benefits, capabilities and requirements. It includes EMS in-flight and ground applications of people and equipment, and recommends EMS requirements that are a balance of selected benefits and available capabilities. This ARP purposely addresses a comprehensive EMS. The intent is to provide an extensive list of possible EMS design options. NOTE: - Section 3 describes an EMS. - Sections 4 and 5 outline benefits and capabilities that should be considered for study purposes to define EMS baselines for how much or how little engine monitoring might be required. - Section 6 provides implementation requirements that should be considered for an EMS after study baseline levels of EMS complexity are selected.
Standard

AIRCRAFT GAS TURBINE ENGINE MONITORING SYSTEM GUIDE

1993-04-01
HISTORICAL
ARP1587A
This SAE Aerospace Recommended Practice (ARP) is a system guide for Engine Monitoring System (EMS) definition and implementation. This keystone document addresses EMS benefits, capabilities, and requirements. It includes EMS in-flight and ground applications consisting of people, equipment, and software. It recommends EMS requirements that are a balance of selected benefits and available capabilities. This ARP purposely addresses a wide range of EMS architecture. The intent is to provide an extensive list of possible EMS design options. NOTE: a Section 3 describes an EMS. b Sections 4 and 5 outline benefits and capabilities that should be considered for study purposes to define EMS baselines for how much engine monitoring is required. c Section 6 provides implementation requirements that should be considered for an EMS after study baseline levels of EMS complexity are selected.
Standard

Aircraft Gas Turbine Engine Health Management System Guide

2007-05-21
CURRENT
ARP1587B
This SAE Aerospace Recommended Practice (ARP) examines the whole construct of an Engine Health Management (EHM) system. This keystone document gives a top-level view and addresses EHM description, benefits, and capabilities, and provides examples. This ARP purposely addresses a wide range of EHM architectures to demonstrate possible EHM design options. This ARP is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits. Other SAE documents (Aerospace Standards, Aerospace Recommended Practices, and Aerospace Information Reports) address specific component specifications, procedures and "lessons learned".
Standard

GUIDE TO OIL SYSTEM MONITORING IN AIRCRAFT GAS TURBINE ENGINES

1984-03-01
HISTORICAL
AIR1828
The purpose of this Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of oil system monitoring devices and methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices which can be considered appropriate for routine maintenance. In agreement with industry usage, wear particle size ranges are given in μm (1 μm = 10-3 millimeter = 10-6 meter). Other dimensions are given in millimeters, with inches in parenthesis.
Standard

GUIDE TO ENGINE OIL SYSTEM MONITORING

1992-01-22
HISTORICAL
AIR1828A
The purpose of this SAE Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of oil system monitoring devices and methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices that can be considered appropriate for routine maintenance. In agreement with industry usage, wear particle size ranges are given in micrometers (1 μm = 10-3 mm = 10-6 m).
Standard

Guide to Engine Lubrication System Monitoring

2005-06-27
HISTORICAL
AIR1828B
The purpose of this SAE Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of lubrication system monitoring methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices that can be considered appropriate for routine maintenance.
Standard

Guide to Engine Lubrication System Monitoring

2018-04-10
CURRENT
AIR1828C
This SAE Aerospace Information Report (AIR) provides information and guidance for the selection and use of technologies and methods for lubrication system monitoring of gas turbine aircraft engines. This AIR describes technologies and methods covering oil system performance monitoring, oil debris monitoring, and oil condition monitoring. Both on-aircraft and off-aircraft applications are presented. A higher-level view of lubrication system monitoring as part of an overall engine monitoring system (EMS), is discussed in ARP1587. The scope of this document is limited to those lubrication system monitoring, inspection and analysis methods and devices that can be considered appropriate for health monitoring and routine maintenance. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard.
Standard

Determination of Costs and Benefits from Implementing an Engine Health Management System

2019-10-02
WIP
ARP4176A
This ARP provides an insight into how to approach a cost benefit analysis (CBA) to determine the return on investment (ROI) that would result from implementing a propulsion Prognostics and Health Management (PHM) system on an air vehicle. It describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with PHM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a PHM system could provide.
Standard

Determination of Costs and Benefits from Implementing an Engine Health Management System

2013-02-05
CURRENT
ARP4176
This ARP provides an insight into how to approach a cost benefit analysis (CBA) to determine the return on investment (ROI) that would result from implementing a propulsion Prognostics and Health Management (PHM) system on an air vehicle. It describes the complexity of features that can be considered in the analysis, the different tools and approaches for conducting a CBA and differentiates between military and commercial applications. This document is intended to help those who might not necessarily have a deep technical understanding or familiarity with PHM systems but want to either quantify or understand the economic benefits (i.e., the value proposition) that a PHM system could provide.
Standard

Aircraft Gas Turbine Engine Health Management System Development and Integration Guide

2016-03-05
CURRENT
ARP5120
ARP5120 provides recommended best practices, procedures, and technology to guide the physical and functional design, development, integration, verification, and validation of highly reliable Engine Health Management (EHM) systems for aircraft engines and Auxiliary Power Units (APUs). This SAE Aerospace Recommended Practice (ARP) also serves as a concise reference of considerations, approaches, activities, and requirements for producing the end-to-end engine health management system comprised of both on and off-board subsystems for the sensing, acquisition, analysis, detection, and data handling functions for EHM. These functions may also be used to effect continued operation or return to service decisions when demonstrated as compliant with the applicable airworthiness requirements defined by the responsible Aviation Authority. Where practical, this document delineates between military and commercial practices.
Standard

A Guide to APU Health Management

2018-04-09
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
X