Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Standard

GUIDE TO LIFE USAGE MONITORING AND PARTS MANAGEMENT FOR AIRCRAFT GAS TURBINE ENGINES

1988-02-29
HISTORICAL
AIR1872
The effectiveness of Engine Life Usage Monitoring and Parts Management systems is largely determined by the aircraft-specific requirements. This AIR addresses the following areas: a Safety. b Life-limiting criteria. c Life usage algorithm development. d Data acquisition and management. e Parts life tracking. f Design feedback. g Cost effectiveness. This AIR primarily examines the requirements and techniques currently in use, including: a Parts classification and control requirements. b Failure causes of life-limited parts. c Engine life prediction and usage measurement techniques. d Method validation. e Parts life usage data management. f Lessons learned. g Life usage tracking benefits.
Standard

Guide to Life Usage Monitoring and Parts Management for Aircraft Gas Turbine Engines

1998-05-01
HISTORICAL
AIR1872A
The effectiveness of Engine Life Usage Monitoring and Parts Management systems is largely determined by the aircraft-specific requirements. This document addresses the following areas: a Safety b Life-limiting criteria c Life usage algorithm development d Data acquisition and management e Parts life tracking f Design feedback g Cost effectiveness It primarily examines the requirements and techniques currently in use, and considers the potential impact of new technology to the following areas: a Parts classification and control requirements b Failure causes of life-limited parts c Engine life prediction and usage measurement techniques d Method validation e Parts life usage data management f Lessons learned g Life usage tracking benefits
Standard

A GUIDE TO THE DEVELOPMENT OF A GROUND STATION FOR ENGINE CONDITION MONITORING

1994-02-01
HISTORICAL
AIR4175
An effective ground station is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design. Unlike on-board processing systems which principally use data to indicate when engine maintenance is required, ground stations offer much greater processing power to analyse and manipulate EMS data more comprehensively for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements which will determine the basic design of a ground station, including the interfaces with other maintenance or logistics systems. A brief discussion is also included on some of the more recent advances in EMS ground station technology which have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines. Finally, this document addresses the program management requirements associated with the initial development and on-going support of a ground station.
Standard

Software Interfaces for Ground-Based Monitoring Systems

2001-09-01
HISTORICAL
AS4831
To establish a specification for software input and output interfaces for condition monitoring and performance programs used to monitor equipment from multiple manufacturers. The purpose of standardizing these interfaces is to improve operational flexibility and efficiency of monitoring systems as an aid to cost effectiveness (e.g., easier implementation).
Standard

Recommended Ice Bath for Reference Junctions

2018-05-03
CURRENT
ARP691
The ice bath recommended herein is similar to that described in SAE AIR 46.* Some material not presented in AIR 46, including preferred dimensions, has been added.
Standard

Standard Exposed Junction Thermocouple for Controlled Conduction Errors in Measurement of Air or Exhaust Gas Temperature

2018-05-03
CURRENT
ARP690
The thermocouple design recommended herein is presented as one for which the correction to the observed emf, because of thermal conduction along the stem and wires, is within the limits presented in the accompanying figure. On referring to the figure, it is seen that no restriction is placed upon the diameter of the thermocouple or stem, and the longitudinal dimensions are expressed in terms of wire and stem diameters. The type of stem, such as packed ceramic stock, refractory insulating tubing, etc., also is left open to choice. Thus the sizes of wires and supporting stems may be varied over wide ranges to match particular requirements where conduction errors are to be limited or controlled.
Standard

The Preparation and Use of Thermocouples for Aircraft Gas Turbine Engines

2022-09-14
CURRENT
AIR46C
This SAE Aerospace Information Report (AIR) reviews the precautions that must be taken and the corrections which must be evaluated and applied if the experimental error in measuring the temperature of a hot gas stream with a thermocouple is to be kept to a practicable minimum. Discussions will focus on Type K thermocouples, as defined in National Institute of Standards and Technology (NIST) Monograph 175 as Type K, nickel-chromium (Kp) alloy versus nickel-aluminium (Kn) alloy (or nickel-silicon alloy) thermocouples. However, the majority of the content is relevant to any thermocouple type used in gas turbine applications.
Standard

GUIDE TO OIL SYSTEM MONITORING IN AIRCRAFT GAS TURBINE ENGINES

1984-03-01
HISTORICAL
AIR1828
The purpose of this Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of oil system monitoring devices and methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices which can be considered appropriate for routine maintenance. In agreement with industry usage, wear particle size ranges are given in μm (1 μm = 10-3 millimeter = 10-6 meter). Other dimensions are given in millimeters, with inches in parenthesis.
Standard

GUIDE TO ENGINE OIL SYSTEM MONITORING

1992-01-22
HISTORICAL
AIR1828A
The purpose of this SAE Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of oil system monitoring devices and methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices that can be considered appropriate for routine maintenance. In agreement with industry usage, wear particle size ranges are given in micrometers (1 μm = 10-3 mm = 10-6 m).
Standard

Guide to Engine Lubrication System Monitoring

2014-05-01
HISTORICAL
AIR1828B
The purpose of this SAE Aerospace Information Report (AIR) is to provide information and guidance for the selection and use of lubrication system monitoring methods. This AIR is intended to be used as a technical guide. It is not intended to be used as a legal document or standard. The scope of this document is limited to those inspection and analysis methods and devices that can be considered appropriate for routine maintenance.
X