Refine Your Search

Topic

Search Results

Standard

Immunity to Conducted Transients on Power Leads

2012-01-30
HISTORICAL
J1113/11_201201
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2011-06-07
HISTORICAL
J1113/13_201106
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2015-02-26
CURRENT
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Immunity to Conducted Transients on Power Leads

2017-06-13
HISTORICAL
J1113/11_201706
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Immunity to Conducted Transients on Power Leads

2018-12-10
CURRENT
J1113/11_201812
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)--Conducted Immunity, 15 Hz to 250 kHz--All Leads

2004-07-30
HISTORICAL
J1113/2_200407
This document is an SAE Standard and covers the requirements for determining the immunity characteristics of automotive electronic equipment, subsystems, and systems to EM energy injected individually onto all leads. This test may be used over the frequency range of 30 Hz to 250 kHz. The method is applicable to all input, output, and power leads. The method is particularly useful in evaluating DUTs with acoustic or visible display functions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)—Conducted Immunity, 15 Hz to 250 kHz—All Leads

2010-08-06
CURRENT
J1113/2_201008
This document is an SAE Standard and covers the requirements for determining the immunity characteristics of automotive electronic equipment, subsystems, and systems to EM energy injected individually onto each lead. This test may be used over the frequency range of 15 Hz to 250 kHz. The method is applicable to all input, output, and power leads. The method is particularly useful in evaluating DUTs with acoustic or visible display functions.
Standard

Electromagnetic Compatibility Measurement Procedures and Limits for Vehicle Components (Except Aircraft)--Conducted Immunity, 15 Hz to 250 Khz--All Leads

1996-09-01
HISTORICAL
J1113/2_199609
This document is an SAE Standard and covers the requirements for determining the immunity characteristics of automotive electronic equipment, subsystems, and systems to EM energy injected individually onto all leads. This test may be used over the frequency range of 30 Hz to 250 kHz. The method is applicable to all input, output, and power leads. The method is particularly useful in evaluating DUTs with acoustic or visible display functions.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2010-08-05
CURRENT
J1113/3_201008
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Electromagnetic Susceptibility Measurement Procedures for Vehicle Components (Except Aircraft)

1984-06-01
HISTORICAL
J1113_198406
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Electromagnetic Susceptibility Measurement Procedures for Vehicle Components (Except Aircraft)

1978-06-01
HISTORICAL
J1113A_197806
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Electromagnetic Susceptibility Measurement Procedures for Vehicle Components (Except Aircraft)

1975-04-01
HISTORICAL
J1113_197504
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Vehicle Electromagnetic Immunity—Electrostatic Discharge (ESD)

2009-06-29
HISTORICAL
J551/15_200906
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Vehicle Electromagnetic Immunity - Electrostatic Discharge (ESD)

2015-09-17
CURRENT
J551/15_201509
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Vehicle Electromagnetic Immunity - Power Line Magnetic Fields

2015-07-22
CURRENT
J551/17_201507
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity—Power Line Magnetic Fields

2010-01-07
HISTORICAL
J551/17_201001
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Limits and Methods of Measurement of Radio Disturbance Characteristics of Components and Modules for the Protection of Receivers Used On Board Vehicles

2006-09-29
CURRENT
J1113/41_200609
This SAE Standard contains limits1 and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 1000 MHz. The standard applies to any electronic/electrical component intended for use in vehicles and large devices. Refer to International Telecommunications Union (ITU) Publications for details of frequency allocations. The limits are intended to provide protection for receivers installed in a vehicle from disturbances produced by components/modules in the same vehicle.2 The receiver types to be protected are: sound and television receivers3, land mobile radio, radio telephone, amateur and citizens' radio. For the purpose of this document, a vehicle is a machine which is self-propelled. Vehicles include (but are not limited to) passenger cars, trucks, agricultural tractors, and snowmobiles. The limits in this document are recommended and subject to modification as agreed between the vehicle manufacturer and the component supplier.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (Up to 15 M) and Machines (50 Hz to 18 Ghz)

1996-06-01
HISTORICAL
J551/1_199606
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle or other device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) of a vehicle or device is included. All equipment normally operating when the engine is running is included. Operator controlled equipment is included or excluded as specified in the individual document parts. The recommended levels apply only to complete vehicles in their final manufactured form. Vehicle-mounted rectifiers used for charging in electric vehicles are included in Part 2 of this document when operated in their charging mode. Additional charger requirements are under development in SAE J551-5. Emissions from intentional radiators are not controlled by this document.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz)

2006-10-06
HISTORICAL
J551/1_200610
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle or device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) of a vehicle or device is included. All equipment normally operating when the engine is running is included. Operator controlled equipment is included or excluded as specified in the individual document parts. The recommended levels apply only to complete vehicles in their final manufactured form. Vehicle-mounted rectifiers used for charging in electric vehicles are included in Part 2 of this series of documents when operated in their charging mode. Emissions from intentional radiators are not controlled by this document. (See applicable, appropriate regulatory documents.)
Standard

Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz)

1994-03-01
HISTORICAL
J551/1_199403
This SAE Standard covers the measurement of radio frequency radiated emissions and immunity. Each part details the requirements for a specific type of electromagnetic compatibility (EMC) test and the applicable frequency range of the test method. The methods are applicable to a vehicle, boat, machine or device powered by an internal combustion engine or battery powered electric motor. Operation of all engines or motors (main and auxiliary) of a vehicle, boat, machine or device is included. All equipment normally operating when the vehicle, boat, machine or device is in operation is included. Operator controlled equipment is included or excluded as specified in the individual document parts. As a special case, CISPR 12 applies to battery powered floor finishing equipment, but robot carpet sweepers are excluded. By reference, IEC CISPR 12 and CISPR 25 are adopted as the standards for the measurement of vehicle emissions.
X