Refine Your Search

Topic

Search Results

Standard

Quick Connector Specification for Liquid Fuel and Vapor/Emissions Systems

1997-12-01
HISTORICAL
J2044_199712
This SAE Recommended Practice defines standard tube end form dimensions so as to guarantee interchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions: a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b. Operating pressure up to 500 kPa, 5 bar, (72 psig). c. Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi). d. Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

1992-06-01
HISTORICAL
J2044_199206
This SAE Recommended Practice defines standard tube end form dimensions so as to guarantee interchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions: a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b. Operating pressure up to 500 kPa, 5 bar, (72 psig). c. Operating vacuum down to -50 kPa, -0.5 bar (-7.2 psi). d. Operating temperatures from -40 °C (Ð40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2002-09-13
HISTORICAL
J2044_200209
This SAE Recommended Practice defines standard tube end form dimensions so as to guarantee interchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions: a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b. Operating pressure up to 500 kPa, 5 bar, (72 psig). c. Operating vacuum down to -50 kPa, -0.5 bar (-7.2 psi). d. Operating temperatures from -40 °C (Ð40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection.
Standard

Quick Connector Specification for Liquid Fuel and Vapor/Emissions Systems

1996-01-01
HISTORICAL
J2044_199601
This SAE Recommended Practice defines minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible tubing systems. The document applies to automotive and light truck gasoline and diesel fuel systems, with operating pressures up to 500 kPa, 5 Bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before reconnecting. Vehicle O.E.M. fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2011-01-25
WIP
J2044
This SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions: a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems; b. Operating pressure up to 500 kPa, 5 bar, (72 psig); c. Operating vacuum down to -50 kPa, -0.5 bar (-7.2 psi); d. Operating temperatures from -40 °C (-40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2009-08-13
CURRENT
J2044_200908
This SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions: a Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b Operating pressure up to 500 kPa, 5 bar, (72 psig). c Operating vacuum down to −50 kPa, −0.5 bar (−7.2 psi). d Operating temperatures from −40 °C (−40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2018-11-08
WIP
J2973
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2014-02-05
CURRENT
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Nonmetallic Fuel System Tubing with One or More Layers

2004-11-01
CURRENT
J2260_200411
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid-carrying or vapor-carrying component in fuel systems for gasoline, or alcohol blends with gasoline. Requirements in this document also apply to monowall tubing (one layer construction). When the construction has one or more layers of polymer-based compounds in the wall, the multilayer constructions are primarily for the purpose of improvement in permeation resistance to hydrocarbons found in various fuels. The tube construction can have a straight-wall configuration, a wall that is convoluted or corrugated, or a combination of each. It may have an innermost layer with improved electrical conductivity for use where such a characteristic is desired. The improved electrical conductivity can apply to the entire wall construction, if the tubing is a monowall. (For elastomeric based MLT constructions, refer to SAE J30 and SAE J2405).
Standard

Nonmetallic Fuel System Tubing with One or More Layers

2008-04-22
WIP
J2260
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid-carrying or vapor-carrying component in fuel systems for gasoline, or alcohol blends with gasoline. Requirements in this document also apply to monowall tubing (one layer construction). When the construction has one or more layers of polymer-based compounds in the wall, the multilayer constructions are primarily for the purpose of improvement in permeation resistance to hydrocarbons found in various fuels. The tube construction can have a straight-wall configuration, a wall that is convoluted or corrugated, or a combination of each. It may have an innermost layer with improved electrical conductivity for use where such a characteristic is desired. The improved electrical conductivity can apply to the entire wall construction, if the tubing is a monowall. (For elastomeric based MLT constructions, refer to SAE J30 and SAE J2405).
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2010-06-16
CURRENT
J2663_201006
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
Standard

Fuel Tank Filler Cap and Cap Retainer

2017-05-11
WIP
J829
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer

2000-06-16
HISTORICAL
J829_200006
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer

1988-02-01
HISTORICAL
J829_198802
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer

2012-06-29
CURRENT
J829_201206
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

Rated (Advertised) Fuel Capacity--Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2005-03-24
HISTORICAL
J398_200503
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10,000 lb) maximum GVW. It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

1988-02-01
HISTORICAL
J398_198802
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10,000 lb) maximum GVW. It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

1969-06-01
HISTORICAL
J398_196906
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10,000 lb) maximum GVW. It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Rated (Advertised) Fuel Capacity-Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

1995-07-01
HISTORICAL
J398_199507
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10,000 lb) maximum GVW. It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
X