Refine Your Search

Topic

Search Results

Standard

FUEL TANK FILLER CONDITIONS - PASSENGER CAR, MULTI-PURPOSE PASSENGER VEHICLES, AND LIGHT DUTY TRUCKS

1988-02-01
HISTORICAL
J398_198802
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multi-purpose passenger vehicles, and light-duty trucks (10 000 lb (4536 kg) maximum gvw), (Ref. J1100, Motor Vehicle Dimensions). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

FUEL TANK FILLER CONDITIONS—PASSENGER CAR MULTI-PURPOSE PASSENGER VEHICLES, AND LIGHT DUTY TRUCKS

1978-06-01
HISTORICAL
J398B_197806
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks (10 000 lb (4536 kg) maximum gvw), (Ref. J1100a, Motor Vehicle Dimensions (September, 1975)). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Rated (Advertised) Fuel Capacity—Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2005-03-24
HISTORICAL
J398_200503
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

FUEL TANK FILLER CONDITIONS—PASSENGER CAR, MULTIPURPOSE PASSENGER VEHICLES, AND LIGHT-DUTY TRUCKS

1995-07-01
HISTORICAL
J398_199507
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10 000 lb) maximum GVW (Ref. J1100). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives

2013-05-14
CURRENT
J1747_201305
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Standard

Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives

2007-07-20
HISTORICAL
J1747_200707
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2012-05-31
CURRENT
J2785_201205
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2006-11-06
HISTORICAL
J2785_200611
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

NONMETALLIC FUEL SYSTEM TUBING

1994-05-01
HISTORICAL
J2043_199405
This SAE Standard covers the minimum requirements for nonmetallic tubing as manufactured for use in gasoline or diesel fuel systems. It is not intended to cover tubing for any portion of the system which operates below -40 °C, above 115 °C, or above a maximum working gage pressure of 690 kPa.
Standard

Fuel Filler Pipe Assembly Design Practice to Meet Low Evaporative Emission Requirements

2019-09-11
WIP
J2599
This SAE Recommended Practice covers design and evaluation of the entire gasoline filler pipe assembly used on cars and light trucks with respect to compliance with CARB (California Air Resources Board) LEV II (meeting or exceeding EPA Tier 2 and EU Stage-5 evaporative emissions requirements). It is limited to an assembly which is joined to the fuel tank using either a hose, Quick Connect Coupling, or a grommet type sealing device. The Design Practice covers the filler cap, filler pipe, filler pipe assembly to tank hose, and filler pipe assembly to tank grommet or spud. It includes recommendations for design of components and assemblies intended to perform successfully in evaporative emission SHED (Sealed Housing for Evaporative Determination) tests, based on best practices known at the time of release.
Standard

Methods for Determining Physical Properties of Polymeric Materials Exposed to Hydrocarbon Fuels or Their Surrogates and Their Blends with Oxygenated Additives

2007-09-27
HISTORICAL
J1748_200709
This SAE Recommended Practice applies to determining worst-case fuel or test fluid surrogate, conditioning test specimens in worst-case fuel(s)/surrogate(s) prior to testing, individual tests for properties of polymeric materials exposed to oxygenate fuel/surrogate mixtures with additives. The determination of equilibrium, as well as typical calculations are also covered.
Standard

Gasoline Dispenser Nozzle Spouts

1999-01-01
HISTORICAL
J285_199901
This SAE Recommended Practice provides standardized dimensions for nozzle spouts and a system for differentiating between "unleaded gasoline" nozzle spouts and all other fuel nozzle spouts. If emission control equipment requires unleaded gasoline exclusively and other fuels not meeting this specification are available, differentiation is accomplished by providing differences between the outside diameter of the nozzle spouts used to dispense "unleaded gasoline" and those used for all other fuels. These differences establish a basis on which fuel filler inlets that will accept only "unleaded gasoline" can be designed. Spouts used to dispense "unleaded gasoline" should have a nominal OD of 20.6 mm (13/16 in) and be straight for 85 to 95 mm (3.35 to 3.74 in) from the outlet. It is understood that tolerances and normal use may increase the spout up to 21.3 mm (0.84 in) OD. The spouts for all other fuels should have a nominal OD of 23.8 mm (15/16 in) or more.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2007-04-23
HISTORICAL
J285_200704
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2019-04-29
CURRENT
J285_201904
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2012-05-31
HISTORICAL
J285_201205
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2010-06-16
HISTORICAL
J2663_201006
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2019-04-01
CURRENT
J2663_201904
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
X