Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Technical Paper

An Analysis of Modern Vehicle Road Loads for Fleetwide Energy Consumption Modelling

2021-09-05
2021-24-0080
Passenger and light-duty vehicles have a high, and steadily increasing, greenhouse gas emissions footprint. Industry and regulators put effort into new, efficient propulsion configurations to reduce carbon dioxide (CO2) emissions from the transport sector. Energy savings are highly impacted not only by the driving style and needs of the driver, but also by the energy mix used during a trip, making the vehicle efficiency benchmarking increasingly complex. A potential way to curb the vehicle energy demand is by minimising the losses due to factors opposing the forward movement, such as vehicle inertia, tyre deformation, drivetrain, and vehicle air-drag. These losses are included in the vehicle road loads. In the present study, we derive representative road load values by employing open access vehicle information and combining physical and statistical methods. These values are then compared to the ones declared by the manufacturer, which are derived by physical coast down tests.
Technical Paper

A Methodology for Monitoring On-Road CO2 Emissions Compliance in Passenger Vehicles

2020-06-30
2020-37-0034
The European Union road transport CO2 emissions regulation foresees mandatory targets for passenger vehicles. However, several studies have shown that there is a divergence between official and real-world values that could range up to 40% compared to the NEDC reference value. The introduction of the Worldwide Harmonized Test Protocol (WLTP) limited this divergence, but it is uncertain whether it can adequately address the problem, particularly considering future evolutions of vehicle technology. In order to address this issue, the recent EU CO2-standards regulation introduces the monitoring of on-road fuel consumption and subsequently CO2 emissions by utilizing On-Board Fuel Consumption Meters (OBFCM). In the near future, all vehicles should provide instantaneous and lifetime-cumulative fuel consumption signals at the diagnostics port. Currently, the fuel consumption signal is not always available.
Technical Paper

Estimating the CO2 Emissions Reduction Potential of Various Technologies in European Trucks Using VECTO Simulator

2017-09-04
2017-24-0018
Heavy-duty vehicles (HDVs) account for some 5% of the EU’s total greenhouse gas emissions. They present a variety of possible configurations that are deployed depending on the intended use. This variety makes the quantification of their CO2 emissions and fuel consumption difficult. For this reason, the European Commission has adopted a simulation-based approach for the certification of CO2 emissions and fuel consumption of HDVs in Europe; the VECTO simulation software has been developed as the official tool for the purpose. The current study investigates the impact of various technologies on the CO2 emissions of European trucks through vehicle simulations performed in VECTO. The chosen vehicles represent average 2015 vehicles and comprised of two rigid trucks (Class 2 and 4) and a tractor-trailer (Class 5), which were simulated under their reference configurations and official driving cycles.
Technical Paper

The Development of a Simulation Tool for Monitoring Heavy-Duty Vehicle CO2 Emissions and Fuel Consumption in Europe

2013-09-08
2013-24-0150
Following its commitment to reduce CO2 emissions from road transport in Europe, the European Commission has launched the development of a new methodology for monitoring CO2 emissions from heavy-duty vehicles (HDV). Due to the diversity and particular characteristics of the HDV sector it was decided that the core of the proposed methodology will be based on a combination of component testing and vehicle simulation. A detailed methodology for the measurement of each individual vehicle component of relevance and a corresponding vehicle simulation is being elaborated in close collaboration with the European HDV manufacturers, component suppliers and other stakeholders. Similar approaches have been already adopted in other major HDV markets such as the US, Japan and China. In order to lay the foundations for the future HDV CO2 monitoring and certification software application, a new vehicle simulation software was developed, Vehicle Energy Consumption calculation Tool (henceforward VECTO).
Technical Paper

Experimental Assessment of a Diesel-LPG Dual Fuel Supply System for Retrofit Application in City Busses

2012-09-24
2012-01-1944
Gas-operated vehicles powered by natural gas (NG) or other gaseous fuels such as liquefied petroleum gas (LPG), are seen as a possible option for curbing CO₂ emissions, fuel consumption and operating costs of goods and passenger transport. Initiatives have been adopted by various public organizations in Europe and abroad in order to introduce gas-fueled vehicles in their fleets or use retrofit fueling systems in existing ones. In this study a retrofit dual fuel (diesel-gas) fuelling system was investigated as a potential candidate technology for city bus fleets. The system is marketed under the commercial name d-gid. It is a platform developed by the company Ecomotive Solutions for the control and management of a diesel engine fuelled with a mixture of gaseous fuels. In order to assess its environmental and cost effectiveness the system was tested on a Volvo city bus. The tests were performed on an HDV chassis dyno under various driving conditions.
Technical Paper

Eco-Innovation CO2-Reducing Technologies: Status and Future Challenge

2022-06-14
2022-37-0031
The EU projects reaching net-zero emissions by 2050, thus reducing CO2 emissions is a priority in the European Climate Law published in 2021. The transport sector is the second contributor to CO2, responsible for around 26% of EU greenhouse gasses emissions. In 2020, GHG (greenhouse gas) emissions from transport in the EU have dropped by 12.7% due to the COVID-19 pandemic. As society comes back to normality, vehicles use is increasing again. To reach the emission targets, new vehicles can introduce CO2-reducing eco-innovative technologies. So far, these technologies accepted under WLTP are light-emitting diodes and efficient alternators. Nevertheless, many other technologies have potential as eco-innovations. In the past, eco-innovative technologies have contributed to reducing EU CO2 emissions. In 2018, the fleet of newly registered cars with eco-innovations saved around 11000 tonnes of CO2. An increasing tendency is seen in 2019: 21000 tonnes of CO2 were saved at fleet level.
Technical Paper

Development of a Template Model and Simulation Approach for Quantifying the Effect of WLTP Introduction on Light Duty Vehicle CO2 Emissions and Fuel Consumption

2015-09-06
2015-24-2391
The paper describes the development of a modelling approach to simulate the effect of the new Worldwide harmonized Light duty Test Procedure (WLTP) on the certified CO2 emissions of light duty vehicles. The European fleet has been divided into a number of segments based on specific vehicle characteristics and technologies. Representative vehicles for each segment were selected. A test protocol has been developed in order to generate the necessary data for the validation of the vehicle simulation models. In order to minimize the sources of uncertainty and the effects of flexibilities, a reference “template model” was developed to be used in the study. Subsequently, vehicle models were developed using AVL Cruise simulation software based on the above mentioned template model. The various components and sub-modules of the models, as well as their input parameters, have been defined with the support of the respective OEMs.
Technical Paper

An Integrated Experimental and Numerical Methodology for Plug-In Hybrid Electric Vehicle 0D Modelling

2019-09-09
2019-24-0072
Governments worldwide are taking actions aiming to achieve a sustainable transportation system that can comprise of minimal pollutant and GHG emissions. Particular attention is given to the real-world emissions, i.e. to the emissions achieved in the real driving conditions, outside of a controlled testing environment. In this framework, interest in vehicle fleet electrification is rapidly growing, as it is seen as a way to simultaneously reduce pollutant and GHG emissions, while on the other hand OEMs are facing a significant increase in the number of tests which are needed to calibrate this new generation of electrified powertrains over a variety of different driving scenarios.
Technical Paper

A Generalized Component Efficiency and Input-Data Generation Model for Creating Fleet-Representative Vehicle Simulation Cases in VECTO

2019-04-02
2019-01-1280
The Vehicle Energy Consumption calculation Tool (VECTO) is used for the official calculation and reporting of CO2 emissions of HDVs in Europe. It uses certified input data in the form of energy or torque loss maps of driveline components and engine fuel consumption maps. Such data are proprietary and are not disclosed. Any further analysis of the fleet performance and CO2 emissions evolution using VECTO would require generic inputs or reconstructing realistic component input data. The current study attempts to address this issue by developing a process that would create VECTO input files based as much as possible on publicly available data. The core of the process is a series of models that calculate the vehicle component efficiency maps and produce the necessary VECTO input data. The process was applied to generate vehicle input files for rigid trucks and tractor-trailers of HDV Classes 4, 5, 9 and 10.
Technical Paper

Experimental Assessment of Powertrain Components and Energy Flow Analysis of a Fuel Cell Electric Vehicle (FCEV)

2022-06-14
2022-37-0011
European Union's (EU) Climate Law sets a legally binding target of net-zero greenhouse gas emissions by 2050. EU identified hydrogen technologies as a priority introducing hydrogen-powered propulsion systems into the market. Even though the new registrations of fuel cell (FC) passenger cars increased by 41% in 2020 in Europe, the research community faces a lack of public and independent available data regarding the performance and energy efficiency of state-of-the-art FC electric vehicles. This study introduces a tailored methodology to characterise the different powertrain components and analyse the energy flow for a Fuel Cell Electric Vehicle (FCEV) already available on the market. Experimental data are gathered over different driving conditions, including standard driving cycles such as WLTP and US06 tests performed in a laboratory.
Technical Paper

The evolution of conventional vehicles' efficiency for meeting carbon neutrality ambition.

2024-06-12
2024-37-0034
In 2023, the European Union set more ambitious targets for reducing greenhouse gas emissions from passenger cars: the new fleet-wide average targets became 93.6 g/km for 2025, 49.5 g/km in 2030, going to 0 in 2035. One year away from the 2025 target, this study evaluates what contribution to CO2 reduction was achieved from new conventional vehicles and how to interpret forecasts for future efficiency gains. The European Commission’s vehicle efficiency cost-curves suggest that optimal technology adoption can guarantee up to 50% CO2 reduction by 2025 for conventional vehicles. Official registration data between 2013 and 2022, however, reveal only an average 14% increase in fuel efficiency in standard combustion vehicles, although reaching almost 23% for standard hybrids. The smallest gap between certified emissions and best-case scenarios is of 14 g/km, suggesting that some manufacturers’ declared values are approaching the optimum.
X