Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Design and Control of Commuter Plug-In FC Hybrid Vehicle

2007-09-16
2007-24-0079
Strong dependency on crude oil in most areas of modern transportation needs lead into a significant consumption of petroleum resources over many decades. In order to maximize the effective use of remaining resources, various types of powertrain topologies, such as hybrid configurations among fuel cell, electric battery as well as conventional IC engine, have been proposed and tested out for number of vehicle classes including a personal commuting vehicle. In this paper the vehicle parameters are based on a typical commercial sub-compact vehicle (FIAT Panda) and energy needs are estimated on the sized powertrain. The main control approach is divided in two categories: off-line global optimization with dynamic programming (DP, not implementable in real time), and on-line Proportional and Feed-Forward with PI controllers. The proposed control approaches are developed both for charge-sustaining and charge-depleting mode and sample results are shown and compared.
Technical Paper

Experimental Characterization of Mixed-Mode HCCI/DI Combustion on a Common Rail Diesel Engine

2007-09-16
2007-24-0085
Homogeneous Charge Compression Ignition (HCCI) is considered a very promising concept to achieve low NOx and Particulate Matter emissions in traditional spark ignition and Diesel engines. However, controlling the complex mechanisms which govern the combustion process and finding a proper method for the fuel introduction for Diesel HCCI engines have proven to still be a challenge. In addition, the well known IMEP limitations of HCCI combustion restrict the benefits on emissions to low engine load conditions. The current work attempts to extend the benefits of HCCI combustion to a broader range of engine operating conditions by blending the conventional Direct Injection (DI) with the external fuel atomization. A dual combustion system could potentially overcome the limits of low-load operations and allow for a gradual transition between the conventional DI mode at high load and the HCCI external mixture formation at idle and low load.
Technical Paper

Fault Diagnosis Of Steering System For Advanced Vehicle Control Systems

1998-02-23
980604
The viability of many new technologies for improving the drivability and safety of a vehicle has improved with the availability of advanced software and hardware tools. On-line diagnosis of steering system faults is one such area on which a lot of attention has been focused. When used in a manually driven automobile this technology can improve the safety of the vehicle by providing the driver with the fault information. While when used with a computer controlled steering (as envisaged in many of the IVHS technologies) it is of even greater importance, because electronic fault information is crucial to the proper functioning of many such systems. This paper deals with the design of a linear unknown input observer (UIO) based residual generator for steering system diagnosis. The observer was designed based on an accepted model of the automatic car steering problem. The observer was validated through experiments conducted on the OSU-autonomous vehicle.
Technical Paper

Engine and Load Torque Estimation with Application to Electronic Throttle Control

1998-02-23
980795
Electronic throttle control is increasingly being considered as a viable alternative to conventional air management systems in modern spark-ignition engines. In such a scheme, driver throttle commands are interpreted by the powertrain control module together with many other inputs; rather than directly commanding throttle position, the driver is now simply requesting torque - a request that needs to be appropriately interpreted by the control module. Engine management under these conditions will require optimal control of the engine torque required by the various vehicle subsystems, ranging from HVAC, to electrical and hydraulic accessories, to the vehicle itself. In this context, the real-time estimation of engine and load torque can play a very important role, especially if this estimation can be performed using the same signals already available to the powertrain control module.
Technical Paper

Onboard Diagnosis of Engine Misfires

1990-09-01
901768
The integrity of the exhaust emission system in a passenger vehicle can best be maintained by monitoring its performance continuously on board the vehicle. It is with the intent of monitoring emission system performance that the California Air Resources Board has proposed regulations which will require vehicles to be equipped with on-board monitoring systems. These proposed regulations are known as OBDII and will probably be followed by similar Federal EPA regulations.This paper discusses a method of monitoring engine misfire as part of the OBDII requirements for passenger vehicle on-board diagnostics. The method is relatively inexpensive in that it uses an existing sensor for measuring instantaneous crankshaft angular position, and utilizes electronic signal processing which can be implemented in relatively inexpensive custom integrated circuits.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
Technical Paper

Implementation of an Electric All-Wheel Drive (eAWD) System

2008-01-14
2008-01-0599
This paper presents the implementation and performance of an electric all-wheel drive system on a series-parallel, through-the-road hybrid electric vehicle. Conventional methods of all-wheel drive do not provide a suitable solution for this type of vehicle as the powertrain lacks a mechanical link between the front and rear axles. Moreover, this unique architecture allows the vehicle to be propelled solely by the front, or the rear, wheels during typical operation. Thus, the algorithm presented here manages wheel slip by either the front, or rear wheels when engaging to provide all-wheel drive capability. necessary testing validates the robustness of this Extensive system.
Technical Paper

Cleaner Diesel Using Model-Based Design and Advanced Aftertreatment in a Student Competition Vehicle

2008-04-14
2008-01-0868
Traditionally in the United States, Diesel engines have negative connotations, primarily due to their association with heavy duty trucks, which are wrongly characterized as “dirty.” Diesel engines are more energy efficient and produce less carbon dioxide than gasoline engines, but their particulate and NOx emissions are more difficult to reduce than spark ignition engines. To tackle this problem, a number of after-treatment technologies are available, such as Diesel Lean NOx Traps (LNTs)), which reduces oxides of nitrogen, and the Diesel particulate filter (DPF), which reduces particulate matter. Sophisticated control techniques are at the heart of these technologies, thus making Diesel engines run cleaner. Another potentially unattractive aspect of Diesel engines is noise.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

In-Depth Analysis of the Influence of High Torque Brakes on the Jackknife Stability of Heavy Trucks

2003-11-10
2003-01-3398
Published NHTSA rulemaking plans propose significant reduction in the maximum stopping distance for loaded Class-VIII commercial vehicles. To attain that goal, higher torque brakes, such as air disc brakes, will appear on prime movers long before the trailer market sees significant penetration. Electronic control of the brakes on prime movers should also be expected due to their ability to significantly shorten stopping distances. The influence upon jackknife stability of having higher performance brakes on the prime mover, while keeping traditional pneumatically controlled s-cam drum brakes on the trailer, is discussed in this paper. A hybrid vehicle dynamics model was applied to investigate the jackknife stability of tractor-semitrailer rigs under several combinations of load, speed, surface coefficient, and ABS functionality.
Technical Paper

High-power High-speed Road Train System

2003-11-10
2003-01-3380
This paper presents the design and development of a high-power, high-speed “road train” (with both on- and off-road applications). The system looks to optimize both high-speed operation and low-speed, close-quarters driving with the introduction of autonomous power modules. Each trailer in the road train has it own electric traction system. When driving on open roads or in open areas, each traction system receives electric energy from the high-powered tractor. However, the individual traction systems allow for distributed tractive effort, improving upon the classic road train. Further, each module has its own independent steering system, allowing for practical implementation of longer trains. Use of longer trains in open areas allows for reduced operational costs, and increased efficiency. When mobility becomes a primary concern or zero emissions operation is needed, small power supplies can allow independent trailer operation.
Technical Paper

High Performance Fuel Cell Sedan

2004-03-08
2004-01-1003
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Some recent conceptual designs, such as GM's Hy-wire, have recognized this and offered innovative new architectures. Unfortunately, many other new technology concept cars do not exploit the freedoms of the new technologies, hampering themselves with traditional design cues developed for conventional powertrains. This paper will present the conceptual design of a high-power, high-speed fuel cell luxury sedan. One of the main motivations of this case study was to explore what could happen when a vehicle was designed from the ground up as a fuel cell vehicle, optimized at the overall system level as well as at the individual component level. The paper will discuss innovations in vehicle architecture and novel concepts for the electrical transmission, fuel cell system and electromagnetic suspension.
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
X