Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fundamental Analysis of Spring-Varied, Free Piston, Otto Engine Device

2014-04-01
2014-01-1099
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
Journal Article

A Work-Based Window Method for Calculating In-Use Brake-Specific NOx Emissions of Heavy-Duty Diesel Engines

2008-04-14
2008-01-1301
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Journal Article

Crankcase Particulate Emissions from Diesel Engines

2008-06-23
2008-01-1751
In 2007, US EPA implemented the rule that the crankcase emissions be added to the tailpipe emissions to determine the total emissions from a diesel engine if the crankcase were not closed, but few data exist to quantify crankcase emissions from earlier model diesel engines. This paper presents the results of a study on the measurement of the size distribution and number concentration of particulate matter (PM) emitted from the crankcase vents from four different diesel engines under different engine speeds and loads. The engines used in the study were a 1992 Detroit Diesel Series 60, a 1996 Caterpillar 3406E, a 1997 Cummins B5.9 and a 1995 Mack E7-400. The Detroit Diesel engine was tested on an engine dynamometer and crankcase and tailpipe particulates were observed at varying engine speeds and loads. The other three engines were mounted in vehicles, and crankcase PM was observed at several engine speeds with no external load.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Low Temperature Combustion with Thermo-Chemical Recuperation

2007-10-29
2007-01-4074
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
Technical Paper

Thermal Modeling of an Axial Vane Rotary Engine

1998-02-01
980123
A complete three-dimensional thermal finite element analysis has been performed for the Beta version of an axial vane rotary engine. This work investigated the effects of the heat flow for two different geometric designs (kinematic inversions): rotor turning with vane turning and cams turning with a non-rotating vane. The output from a modified zero dimensional combustion code was used to establish the thermal boundary conditions in the finite element model. An iterative procedure between the thermal finite element model and the zero dimensional code was used to obtain the component wall temperature profile. Updating the combustion model wall temperature resulted in different thermal characteristics than those from the constant wall temperature solution. The thermal analysis provided a quantitative comparison of the different geometric versions of the engine, showing where improvements must be made.
Technical Paper

Experimental and Error Analysis Investigation into Dilution Factor Equations

2007-04-16
2007-01-0310
As emission regulations become increasingly strict, the need for more accurate sampling systems becomes essential. When calculating emissions from a dilution system, a correction is made to remove the effects of contaminants in the dilution air. The dilution air correction was explored to determine why this correction is needed, when this correction is important, and what methods are available for calculating the dilution factor (DF). An experimental and error analysis investigation into the standard and recently proposed methods for calculating the DF was conducted. Five steady state modes were run on a 1992 Detroit Diesel engine series 60 and the DF from eleven different equations were investigated. The effects of an inaccurate dilution air correction on calculated fuel flow from a carbon balance and the mass emissions was analyzed. The dilution air correction was shown to be important only for hydrocarbons, particulate matter (PM), and CO2.
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

Neural Network Modeling of Emissions from Medium-Duty Vehicles Operating on Fisher-Tropsch Synthetic Fuel

2007-04-16
2007-01-1080
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
Technical Paper

Heat Release and Emission Characteristics of B20 Biodiesel Fuels During Steady State and Transient Operation

2008-04-14
2008-01-1377
Biodiesel fuels benefit both from being a renewable energy source and from decreasing in carbon monoxide (CO), total hydrocarbons (THC), and particulate matter (PM) emissions relative to petroleum diesel. The oxides of nitrogen (NOx) emissions from biodiesel blended fuels reported in the literature vary relative to baseline diesel NOx, with no NOx change or a NOx decrease found by some to an increase in NOx found by others. To explore differences in NOx, two Cummins ISM engines (1999 and 2004) were operated on 20% biodiesel blends during the heavy-duty transient FTP cycle and the steady state Supplemental Emissions Test. For the 2004 Cummins ISM engine, in-cylinder pressure data were collected during the steady state and transient tests. Three types of biodiesel fuels were used in the blends: soy, tallow (animal fat), and cottonseed. The FTP integrated emissions of the B20 blends produced a 20-35% reduction in PM and no change or up to a 4.3% increase in NOx over the neat diesel.
Technical Paper

Emissions from Trucks using Fischer-Tropsch Diesel Fuel

1998-10-19
982526
The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. An overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

A Configuration for a Continuously Variable Power-Split Transmission in Hybrid-Electric Vehicle Applications

2004-03-08
2004-01-0571
Continuously variable transmissions (CVTs) are usually used in small vehicles due to power limitations on the variable elements. Continuously variable power-split transmissions (CVPST) were developed in order to reduce the fraction of power passing through the variable elements [1,2]. The configuration presented in this paper includes a planetary gear train (PGT), which in combination with the CVT allows the power to be split and therefore increase the power envelope of the system. The PGT also provides a branch that can be used in a hybrid electric vehicle (HEV) operation through an electric motor. A conceptual design of a CVPST for a HEV is presented in this paper. The objectives are to show the different operational modes, with diagrams, perform a power analysis, develop the velocity and force equations and finally show the performance of the system with an example application.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

2003-09-08
2003-01-3020
The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
X