Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Forward Collision Warning Timing in Near Term Applications

Forward Collision Warning (FCW) is a system intended to warn the driver in order to reduce the number of rear end collisions or reduce the severity of collisions. However, it has the potential to generate driver annoyances and unintended consequences due to high ineffectual (false or unnecessary) alarms with a corresponding reduction in the total system effectiveness. The ineffectual alarm rate is known to be closely associated with the “time to issue warning.” This results in a conflicting set of requirements. The earlier the time the warning is issued, the greater probability of reducing the severity of the impact or eliminating it. However, with an earlier warning time there is a greater chance of ineffectual warning, which could result in significant annoyance, frequent complaints and the driver's disengagement of the FCW. Disengaging the FCW eliminates its potential benefits.
Journal Article

What's Speed Got To Do With It?

The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Technical Paper

Data-Based Models for Spine Acceleration Response of the Side Impact Dummy

The response of the spine acceleration to rib and pelvis acceleration input of the side impact dummy (SID) is modeled using system identification methods. The basis for the modeling is a simplified representation of the SID by a 3-mass, 2-spring system. Based on this spring-mass representation, two types of response models are established. The first is a "gray-box" type with rib/pelvis-spine relationship modeled by Auto Regression with eXogeneous (or eXtra) input (ARX) type system models. The structure of these models is partially based on the spring-mass simplified representation, hence the notion "gray- box." The parameters of these models are identified through linear regression from test data. The second type of models is noted "physical model" here, since it is strictly a state- space form of the equation of motion of the simple spring-mass representation.
Technical Paper


A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in twenty four frontal impact sled tests. Various time histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in light of their design differences. This has lead to some understanding about the differences and similarities between the NHTSA advanced dummy and the Hybrid III. In general, the chest as well as the head motion in the NHTSA advanced dummy are greater. The lumbar moments in the NHTSA advanced dummy are lower than that in the Hybrid III. The upper and lower spine segments in the NHTSA advanced dummy, generally rotate more than the spine of the Hybrid III.
Technical Paper

An Impact Pulse-Restraint Energy Relationship and Its Applications

This paper presents an energy relationship between vehicle impact pulses and restraint systems and applies the relationship to formulations of response factors for linear and nonlinear restraints. It also applies the relationship to derive optimal impact pulses that minimize occupant response for linear and nonlinear restraints. The relationship offers a new viewpoint to impact pulse optimization and simplifies the process mathematically. In addition, the effects of different vehicle impact pulses on the occupant responses with nonlinear restraints are studied. Finally, concepts of equivalent pulses and equal intensity pulses are presented for nonlinear restraints.
Technical Paper

Impact Response and Injury of the Pelvis

Multiple axial knee impacts and/or a single lateral pelvis impact were performed on a total of 19 cadavers. The impacting surface was padded with various materials to produce different force-time and load distribution characteristics. Impact load and skeletal acceleration data are presented as functions of both time and frequency in the form of mechanical impedance. Injury descriptions based on gross autopsy are given. The kinematic response of the pelvis during and after impact is presented to indicate the similarities and differences in response of the pelvis for various load levels. While the impact response data cannot prescribe a specific tolerance level for the pelvis, they do indicate variables which must be considered and some potential problems in developing an accurate injury criterion.
Technical Paper

A Data-Based Model of the Impact Response of the SID

A simple spring-mass model of the impact response of the side impact dummy (SID) is established. The spring and mass constants of the model are established through system identification methodology based on data from impact tests. The tests are performed in laboratory with hydraulically driven impactors impacting the chest and pelvis of the SID. The input data to the model consist of measured contact force or impactor velocity time histories, and the output data are accelerations on the rib, spine, and pelvis of the SID. The established model appears to predict the test results with reasonable accuracy. The main purpose of this study, however, is to use this simple model to carry out parametric studies of the response of the dummy with changing impact parameters, the result of which would be useful in understanding vehicle crash tests using the SID.
Technical Paper

Thoracic Response to FrontalImpact

Heart-aortic trauma was investigated using live, anesthetized and postmortem canines subjected to frontal impact with a blunt impactor. The major focuses of this research program were: trauma to the heart aortic system, the kinematic response of the thoracic cage, and pressure in the ascending and descending aorta.
Technical Paper

UMTRI Experimental Techniques in Head Injury Research

This paper discusses techniques developed and used by the Biosciences Group at the University of Michigan Transportation Research Institute (UMTRI) for measuring three-dimensional head motion, skull bone strain, epidural pressure, and internal brain motion of repressurized cadavers and Rhesus monkeys during head impact. In the experimental design, a stationary test subject is struck by a guided moving impactor of 10 kg (monkeys) and 25 or 65 kg (cadavers). The impactor striking surface is fitted with padding to vary the contact force-time characteristics. The experimental technique uses a nine-accelerometer system rigidly affixed to the skull to measure head motion, transducers placed at specific points below the skull to record epidural pressure, repressurization of both the vascular and cerebrospinal systems, and high-speed cineradiography (at 1000 frames per second) of radiopaque targets.
Technical Paper

Critical Limitations on Significant Factors in Head Injury Research

The response of the head to blunt impact was investigated using anesthetized live and repressurized- and unrepressurized-postmortem Rhesus. The stationary test subject was struck on the occipital by a 10 kg guided moving impactor. The impactor striking surface was fitted with padding to vary the contact force-time characteristics. A nine-accelerometer system, rigidly affixed to the skull, measured head motion. Transducers placed at specific points below the skull recorded epidural pressure. The repressurization of postmortem subjects included repressurization of both the vascular and cerebrospinal systems.
Technical Paper

Head Impact Response Comparisons of Human Surrogates

The response of the head to impact in the posterior-to-anterior direction was investigated with live anesthetized and post-mortem primates.* The purpose of the project was to relate animal test results to previous head impact tests conducted with cadavers (reported at the 21st Stapp Car Crash Conference (1),** and to study the differences between the living and post-mortem state in terms of mechanical response. The three-dimensional motion of the head, during and after impact, was derived from experimental measurements and expressed as kinematic quantities in various reference frames. Comparison of kinematic quantities between subjects is normally done by referring the results to a standard anatomical reference frame, or to a predefined laboratory reference frame. This paper uses an additional method for describing the kinematics of head motion through the use of Frenet-Serret frame fields.
Technical Paper

Cavitation During Head Impact

The effects of stress in brain material was investigated with experimental and computational idealizations of the head. A water-filled cylinder impacted by a free traveling mass serves to give insight into what could happen to the brain during impact. Under an impact of sufficient velocity, cavitation can occur on the cylinder boundary opposite impact. Limited internal vaporization of the fluid may also occur during severe impact events. Cavitation occurred in these experiments at accelerations greater than 150 g's. Head forms of different sizing will experience an acceleration magnitude inversely proportional to the size difference to produce a similar pressure/cavitation response.
Technical Paper

Estimation of Occupant Position from Probability Manifolds of Air Bag Fire-times

This paper outlines a method for estimating the probablistic nature of airbag crash sensor response and its effect on occupant position. Probability surfaces of airbag fire times are constructed for the impact velocities from 0 to 40 mph. These probability surfaces are obtained by using both frontal offset deformable barrier and frontal rigid barrier crash data. Another probability surface of displacement is constructed to estimate the occupant displacement time history before airbag deployment. This probability surface is constructed by using the initial occupant seating position data and the vehicle impact velocity and deceleration data. In addition, the probability of airbag firing at a given crash velocity is estimated from NASS-CDS, frontal offset and rigid barrier crash data.
Technical Paper

Head impact Response—Skull Deformation and Angular Accelerations

The response of the head to impact was investigated using live anesthetized and postmortem Rhesus monkeys and repressurized cadavers. The stationary test subject was struck by a guided moving impactor of 10 kg for monkeys; 25 or 65 kg for cadavers. The impactor striking surface was fitted with padding to vary the contact force-time characteristics. The experimental technique used a nine-accelerometer system rigidly mounted on the head to measure head motion, transducers placed at specific points below the skull to record epidural pressure, repressurization of both the vascular and cerebral spinal systems of the cadaver model, and high-speed cineradiography (at 400 or 1000 frames per second) of selected test subjects. The results of the tests demonstrate the potential importance of skull deformation and angular acceleration on the injury produced in the live Rhesus and the damage produced in both the post-mortem Rhesus and the cadaver as a result of impact.
Technical Paper

Head and Neck Response to Axial Impacts

Two series of impacts to the head in the superior-inferior direction using 19 unembalmed cadavers are reported. The first series of five tests was aimed at generating kinematic and dynamic response to sub-injurious impacts for the purpose of defining the mechanical characteristics of the undamaged head-neck-spine system in the S-I direction. The second series of fourteen tests was intended to define injury tolerance levels for a selected subject configuration. A 10-kg impactor was used to deliver the impact to the crown at a nominal velocity of 8 m/s for the first series, and between 7 and 11 m/s for the second series. Measurements made in the first series include the impact velocity, force, and energy, the head three-dimensional kinematics, forces and moments at the occipital condyles, and accelerations of the T1, T6, and T12 vertebrae. Impact impedance curves were also generated.
Technical Paper

Significance of Head-to-Knee impacts—A Comparison of Dummy and Cadaver Responses

Head-to-knee interaction of the right front passenger dummy can occur in some 30-35 MPH crash barrier tests. The biofidelity and significance of these interactions as related to predicting human response was addressed in this study. In a series of laboratory experiments an instrumented headform was dropped on the dummy knee to simulate the barrier interactions. These test results were then related to the human by dropping the same headform on the cadaver leg. The instrumented headform was dropped from three heights to impact the Part 572 dummy knee at three velocities. Two impact sites and two impact angles were used. These test parameters bracketed the barrier conditions. Measurements from headform accelerometers permitted calculation of HIC value for comparison to barrier values. Comparable experiments were subsequently performed with three unembalmed cadaver subjects using the same headform and test procedures.
Technical Paper

Thoraco-Abdominal Response to Steering Wheel Impacts

Mechanisms of thoraco-abdominal trauma were investigated utilizing unembalmed, repressurized human cadavers subjected to frontal impact with a steering wheel assembly. The focus of this research program was on trauma to the soft-tissue organs surrounded by the thoracic cage, as well as on the kinematic response of the thoracic cage. The results are compared to other thoraco-abdominal research programs conducted at the University of Michigan Transportation Research Institute (UMTRI) during the last eight years.