Refine Your Search

Search Results

Journal Article

Effects of High Injection Pressure, EGR and Charge Air Pressure on Combustion and Emissions in an HD Single Cylinder Diesel Engine

2009-11-02
2009-01-2815
When increasing EGR from low levels to a level that corresponds to low temperature combustion, soot emissions initially increase due to lower soot oxidation before decreasing to almost zero due to very low soot formation. At the EGR level where soot emissions start to increase, the NOx emissions are low, but not sufficiently low to comply with future emission standards and at the EGR level where low temperature combustion occurs CO and HC emissions are too high. The purpose of this study was to investigate the possibilities for shifting the so-called soot bump (where soot levels are increased) to higher EGR levels, or to reduce the magnitude of the soot bump using very high injection pressures (up to 240 MPa) while reducing the NOx emissions using EGR. The possibility of reducing the CO and HC emissions at high EGR levels due to the increased mixing caused by higher injection pressure was also investigated and the flame was visualized using an endoscope at chosen EGR values.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Technical Paper

Performance of a Heavy Duty DME Diesel Engine - an Experimental Study

2007-10-30
2007-01-4167
Combustion characteristics of dimethyl ether, DME, have been investigated experimentally, in a heavy duty single cylinder engine equipped with an adapted common rail fuel injection system, and the effects of varying injection timing, rail pressure and exhaust gas recirculation on the combustion and emission parameters. The results show that DME combustion does not produce soot and with the use of exhaust gas recirculation NOX emissions can also be reduced to very low levels. However, high injection pressure and/or a DME adopted combustion system is required to improve the mixing process and thus reduce the combustion duration and carbon monoxide emissions.
Technical Paper

Optical study of HCCI Combustion using NVO and an SI Stratified Charge

2007-09-16
2007-24-0012
The effects of using an SI stratified charge in combination with HCCI combustion on combustion phasing, rate of heat release and emissions were investigated in engine experiments to identify ways to extend the operational range of HCCI combustion to lower loads. In the experiments an optical single-cylinder engine equipped with a piezo electric outward-opening injector and operated with negative valve overlap (NVO) and low lift, short duration, camshaft profiles, was used to initiate HCCI combustion by increasing the exhaust gas recirculation (EGR) and thus retaining sufficient thermal energy to reach auto-ignition temperatures. Two series of experiments with full factorial designs were performed, to investigate how the tested parameters (amounts of fuel injected in pilot injections and main injections, stratification injection timing and spark-assistance) influenced the combustion.
Technical Paper

Reduction of Soot Emissions from a Direct Injection Diesel Engine using Water-in-Diesel Emulsion and Microemulsion Fuels

2007-04-16
2007-01-1076
The emissions from a direct injection diesel engine measured according to the ECE R49 13-mode cycle and as a function of exhaust gas recirculation are compared for diesel fuel without water addition, and for water-in-diesel as emulsion and microemulsion. The effect of water addition on the soot emissions was remarkably strong for both the emulsion and microemulsion fuels. The average weighted soot emission values for the 13-mode cycle were 0.0024 and 0.0023 g/kWh for the two most interesting emulsion and microemulsion fuels tested, respectively; 5-fold lower than the US 2007 emission limit.
Technical Paper

A LIF-study of OH in the Negative Valve Overlap of a Spark-assisted HCCI Combustion Engine

2008-04-14
2008-01-0037
Future requirements for emission reduction from combustion engines in ground vehicles might be met by using the HCCI combustion concept. In this study, negative valve overlap (NVO) and low lift, short duration, camshaft profiles, were used to initiate HCCI combustion by increasing the internal exhaust gas recirculation (EGR) and thus retaining sufficient thermal energy for chemical reactions to occur when a pilot injection was introduced prior to TDC, during the NVO. One of the crucial parameters to control in HCCI combustion is the combustion phasing and one way of doing this is to vary the relative ratio of fuel injected in pilot and main injections. The combustion phasing is also influenced by the total amount of fuel supplied to the engine, the combustion phasing is thus affected when the load is changed. This study focuses on the reactions that occur in the highly diluted environment during the NVO when load and pilot to main ratio are changed.
Technical Paper

Influence of Fuel Volatility on Emissions and Combustion in a Direct Injection Spark Ignition Engine

1998-10-19
982701
The purpose of this work was to investigate the influence of fuel parameters on emissions, combustion and cycle to cycle IMEP variations in a single cylinder version of a commercial direct injection stratified charge (DISC) spark ignition engine. The emission measurements employed both conventional emission measurement equipment as well as on-line gas chromatography/mass spectrometry (GC/MS). Four different fuels were compared in the study. The fuel parameters that were studied were distillation range and MTBE (Methyl Tert Buthyl Ether) content. A European certification gasoline fuel was used as a reference. The three other fuels contained 10% MTBE. The measurements were performed at a low engine speed and at a low, constant load. The engine was operated in stratified mode. The start of injection was altered 15 crankangle degrees before and after series calibration with fixed ignition timing in order to vary mixture preparation time.
Technical Paper

Effects of Varying Engine Settings on Combustion Parameters, Emissions, Soot and Temperature Distributions in Low Temperature Combustion of Fischer-Tropsch and Swedish Diesel Fuels

2009-11-02
2009-01-2787
It has been previously shown that engine-out soot emissions can be reduced by using Fischer-Tropsch (FT) fuels, due to their lack of aromatics, compared to conventional Diesel fuels. In this investigation the engine-out emissions and fuel consumption parameters of an FT fuel derived from natural gas were compared to those of Swedish low sulfur diesel (MK1) when used in Low Temperature Combustion mode in a single cylinder heavy-duty diesel engine. The effects of varying Needle Opening Pressure (NOP), Charge Air Pressure (CAP) and Exhaust Gas Recirculation (EGR) according to an experimental design on the measured variables were also assessed. CAP and EGR were found to be the most significant factors for the combustion and emission parameters of both fuels. Increases in CAP resulted in lower soot emissions due to enhanced charge mixing, however NOx emissions rose as CAP increased.
Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

2009-11-02
2009-01-2813
Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

Combustion Characteristics for Partially Premixed and Conventional Combustion of Butanol and Octanol Isomers in a Light Duty Diesel Engine

2017-10-08
2017-01-2322
Reducing emissions and improving efficiency are major goals of modern internal combustion engine research. The use of biomass-derived fuels in Diesel engines is an effective way of reducing well-to-wheels (WTW) greenhouse gas (GHG) emissions. Moreover, partially premixed combustion (PPC) makes it possible to achieve very efficient combustion with low emissions of soot and NOx. The objective of this study was to investigate the effect of using alcohol/Diesel blends or neat alcohols on emissions and thermal efficiency during PPC. Four alcohols were evaluated: n-butanol, isobutanol, n-octanol, and 2-ethylhexanol. The alcohols were blended with fossil Diesel fuel to produce mixtures with low cetane numbers (26-36) suitable for PPC. The blends were then tested in a single cylinder light duty (LD) engine. To optimize combustion, the exhaust gas recirculation (EGR) level, lambda, and injection strategy were tuned.
Technical Paper

Effects of Variable Inlet Valve Timing and Swirl Ratio on Combustion and Emissions in a Heavy Duty Diesel Engine

2012-09-10
2012-01-1719
In order to avoid the high CO and HC emissions associated with low temperature when using high levels of EGR, partially premixed combustion is an interesting possibility. One way to achieve this combustion mode is to increase the ignition delay by adjusting the inlet valve closing timing, and thus the effective compression ratio. The purpose of this study was to investigate experimentally the possibilities of using late and early inlet valve closure to reduce NOx emissions without increasing emissions of soot or unburned hydrocarbons, or fuel consumption. The effect of increasing the swirl number (from 0.2 to 2.5) was also investigated. The combustion timing (CA50) was kept constant by adjusting the start of injection and the possibilities of optimizing combustion using EGR and high injection pressures were investigated. Furthermore, the airflow was kept constant for a given EGR level.
Technical Paper

Numerical Analysis of Combustion and Emissions Formation in a Heavy Duty DME Engine

2012-04-16
2012-01-0156
When using dimethyl ether (DME) to fuel diesel engines at high load and speed, applying high amounts of exhaust gas recirculation (EGR) to limit NOX emissions, carbon monoxide (CO) emissions are generally high. To address this issue, the combustion and emission processes in such engines were analyzed with the three-dimensional CFD KIVA3V code. The combustion sub-mechanism (76 species and 375 reactions) was validated by comparing simulated ignition delays and flame velocities to reference data under diesel-like and atmospheric conditions, respectively. In addition, simulated and experimentally determined rate of heat release (RoHR) curves and emission data were compared for a heavy-duty single-cylinder DME engine (displaced volume, 2.02 liters) with DME-adapted piston and nozzle geometries. The simulated RoHR curves captured the main features of the experimentally measured curves, but deviated in the premixed (higher peak) and late combustion phases (too high).
Technical Paper

Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR

2006-04-03
2006-01-0075
The possibilities for extending the range of engine loads in which soot and NOx emissions can be minimised by using low temperature combustion in conjunction with high levels of EGR was investigated in a series of experiments with a single cylinder research engine. The results show that very low levels of both soot and NOx emissions can be achieved at engine loads up to 50 % by reducing the compression ratio to 14 and applying high levels of EGR (up to approximately 60 %). Unfortunately, the low temperature combustion is accompanied by increases in fuel consumption and emissions of both HC and CO. However, these drawbacks can be reduced by advancing the injection timing. The research engine was a 2 litre direct injected (DI), supercharged, heavy duty, single cylinder diesel engine with a geometry based on Volvo's 12 litre engine, and the amount of EGR was increased by adjusting the exhaust back pressure while keeping the charge air pressure constant.
Technical Paper

Emission Reduction Technologies for the Future Low Emission Rail Diesel Engines: EGR vs SCR

2013-09-08
2013-24-0087
The EU emission standards for new rail Diesel engines are becoming even more stringent. EGR and SCR technologies can both be used to reduce NOx emissions; however, the use of EGR is usually accompanied by an increase in PM emissions and may require a DPF. On the other hand, the use of SCR requires on-board storage of urea. Thus, it is necessary to study these trade-offs in order to understand how these technologies can best be used in rail applications to meet new emission standards. The present study assesses the application of these technologies in Diesel railcars on a quantitative basis using one and three dimensional numerical simulation tools. In particular, the study considers a 560 kW railcar engine with the use of either EGR or SCR based solutions for NOx reduction. The NOx and PM emissions performances are evaluated over the C1 homologation cycle.
Technical Paper

Improving the NOx/Fuel Economy Trade-Off for Gasoline Engines with the CCVS Combustion System

1994-03-01
940482
A system for stratifying recycled exhaust gas (EGR) in order to substantially increase dilution tolerance has been applied to a single cylinder manifold injected pent-roof four-valve gasoline engine. This system has been given the generic name Combustion Control by Vortex Stratification (CCVS). Preliminary research has shown that greatly improved fuel consumption is achievable at stoichiometric conditions compared to a conventional version of the same engine whilst retaining ULEV NOx levels. Simultaneously the combustion system has shown inherently low HC emissions compared to homogeneous EGR engines. A production viable variable air motion system has also been assessed which increases the effectiveness of the stratification whilst allowing full load refinement and retaining high performance.
Technical Paper

Development Experience of a Multi-Cylinder CCVS Engine

1995-02-01
950165
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a multi-cylinder port injected four-valve gasoline engine. This system, dubbed Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at stoichiometric conditions whilst retaining ULEV compatible engine-out NOx and HC emission levels. A production feasible variable air motion system has also been assessed which enables stratification at part load with no loss of performance or refinement at full load.
Technical Paper

Experimental Investigation of the Effect of Needle Opening (NOP) Pressure on Combustion and Emissions Formation in a Heavy Duty DI Diesel Engine

2004-10-25
2004-01-2921
This paper presents an investigation of the effects of varying needle opening pressure (NOP) (375 to 1750 bar), engine speed (1000 rpm to 1800 rpm), and exhaust gas recirculation (EGR) (0% to 20 %) on the combustion process, exhaust emissions, and fuel consumption at low (25 %) and medium (50 %) loads in a single cylinder heavy duty DI diesel research engine with a displacement of 2.02 l. The engine was equipped with an advanced two-actuator E3 Electronic Unit Injector (EUI) from Delphi Diesel, with a maximum injection pressure of 2000 bar. In previous versions of the EUI system, the peak injection pressure was a function of the injection duration, cam lift, and cam rate. The advanced EUI system allows electronic control of the needle opening and closing. This facilitates the generation of high injection pressures, independently of load and speed.
Technical Paper

Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR

2005-10-24
2005-01-3836
The objective of the study presented here was to examine the possibility of simultaneously reducing soot and nitrogen oxide (NOx) emissions from a heavy duty diesel engine, using very high levels of EGR (exhaust gas recirculation). The investigation was carried out using a 2 litre DI single cylinder diesel engine. Two different EGR strategies were examined. One entailed maintaining a constant charge air pressure with a varied exhaust back pressure in order to change the amount of EGR. In the other strategy a constant pressure difference was maintained over the engine, resulting in different equivalence ratios at similar EGR levels. EGR levels of 60 % or more significantly reduced both soot and NOx emissions at 25 % engine load with constant charge air pressure and increasing exhaust back pressure. However, combustion under these conditions was incomplete, resulting in high emissions of carbon monoxide (CO), unburned hydrocarbons (HC) and high fuel consumption.
X