Refine Your Search

Topic

Search Results

Technical Paper

Spray and Combustion Characteristics of Reformulated Biodiesel with Mixing of Lower Boiling Point Fuel

2007-04-16
2007-01-0621
Authors propose the reformulation technique of physical properties of Biodiesel Fuel (BDF) by mixing lower boiling point fuels. In this study, waste cooking oil methyl ester (B100), which have been produced in Kyoto city, is used in behalf of BDF. N-Heptane (C7H16) and n-Dodecane (C12H26) are used as low and medium boiling point fuel. Mixed fuel of BDF with lower boiling point fuels have lighter quality as compared with neat BDF. This result is based on the chemical-thermo dynamical liquid-vapor equilibrium theory. This paper describes fundamental spray and combustion characteristics of mixed fuel of B100 with lower boiling point fuels as well as the reformulation technique. By mixing lower boiling point fuel, lighter quality fuels can be refined. Thus, mixed fuels have higher volatility and lower viscosity. Therefore, vaporization of mixed fuel spray is promoted and liquid phase penetration of mixed fuel shortens as compared with that of neat BDF.
Technical Paper

The structure analysis of diesel free spray with phase change~(Effect of viscosity change of vapor-phase fuel on the structure of diesel free spray)

2000-06-12
2000-05-0100
In this study, the purpose is placed in analysis the structure of diesel spray and, especially, making clear the mixture formation process in the evaporative diesel spray. The liquid fuel was injected from a single-hole nozzle (1/d = 1.0 mm/0.2 mm) into a constant-volume vessel possessing phenomena visualization under high pressure and temperature field. As for measurement method, in order to investigate liquid and vapor-phase of injected spray, exciplex fluorescence method was applied in the evaporative fuel spray. And the interested view region in injected spray is the downstream spray. For the minute investigation of spray flow, the liquid and vapor-phase region is taken with 35 mm still camera and CCD camera, respectively.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

Characteristics of a Transient Spray of Fuel with Multiple Components

2005-10-24
2005-01-3846
Almost all the researches relating to the characteristics of transient spray have carried out by using the fuel with only single component. However, the actual fuel oil supplying to a reciprocating engine has multiple components. Thus, this paper describes the experimental results on the characteristics of a transient spray formed by the mixed fuel with three kinds of pure fuel. The state of periphery of non evaporating spray near the nozzle outlet was arranged by the dimensionless number. And the technique of laser Induced fluorescence (LIF) was applied to an evaporating spray to find the state of mixing.
Technical Paper

Effect of Convective Schemes on LES of Fuel Spray by Use of KIVALES

2008-04-14
2008-01-0930
In this study, a numerical experiment using a 2D convective equation and LES of an evaporative diesel spray for different convective schemes has been performed to examine effects of convective schemes on a fuel-air mixture formation of the diesel spray simulation and to determine the convective scheme used in KIVALES. In addition to KIVALES original schemes, such as QSOU, PDC and IDC, CIP was incorporated into KIVALES in order to calculate the convective terms with low numerical diffusion. The numerical experiment using the 2D convective equation showed that the numerical diffusion of CIP scheme was lowest in the convective schemes used in present study. However CIP scheme used was not a monotone scheme completely due to the overshoot and the undershoot of the scalar provided near the boundary. Hence, CIP scheme was employed for only the convective term of the LES momentum equation, while the other convective schemes were calculated using QSOU, which is a monotone scheme.
Technical Paper

Multicomponent Fuel Consideration for Spray Evaporation Field and Spray-Wall Interaction

2001-03-05
2001-01-1071
It is expected that the analysis of the evaporation process for multicomponent fuels such as actual fuels like gasoline and diesel gas oil could be performed to assess more accurately the mixture preparation field inside the cylinder of D.I.S.I engines and diesel engines. In this paper, we suggested the importance of this multicomponent fuel consideration relating to the mixture formation and combustion characteristics from the basis of their own fuel physical and chemical properties. Then, we introduce a treatment for the phase change of a multicomponent solution through the formation of two-phase regions with the basis of chemical-thermodymical liquid-vapor equilibrium. Next, we analyze the distillation properties of a multicomponent fuel as well as the evaporation process of a multicomponent single droplet by use of the chemical-thermodymical analysis.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Modeling and Measurement on Evaporation Process of Multicomponent Fuels

2000-03-06
2000-01-0280
In previous multi-dimensional modeling on spray dynamics and vapor formation, single component fuel with pure substance has been analyzed to assess the mixture formation. Then it should be expected that the evaporation process could be performed for the multicomponent fuel such as actual Gasoline and Diesel gas oil. In this study, vapor-liquid equilibrium prediction was conducted for multicomponent fuels such as 3 and 10 components mixed solution with ideal solution analysis and non-ideal solution analysis. And the computation of distillation characteristics was conducted for the steady state fuel condition fuel condition to understand the evaporation process. As a result, calculated distillation characteristics are consistent well with experiment results. And the evaporation process of a multicomponent droplet in the combustion chamber has been calculated with the variation of ambient pressure and temperature.
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Organized Structure and Motion in Diesel Spray

1997-02-24
970641
This paper deals with the particle distribution in Diesel spray under the non-evaporating condition from the analytical aspect based on our experimental results. In the analysis, TAB method of KIVA II code and the k-ε turbulent model were used, and the mono-disperse distribution of the initial parcel's diameter, whose size equals to the nozzle hole diameter, was utilized in conjunction with the breakup model. The size distribution of atomized droplets (i.e. the χ-squared distribution function) is justified with the degree of freedom. It is shown that the ambient gas, which is initially quiescent, is induced and led to a turbulent gas jet. The turbulent gas jet which has a equivalent momentum with the Diesel spray was also examined by Discrete Vortex method. The quantitative jet growth was shown to be possible for the estimation and determination in its initial boundary values at the nozzle.
Technical Paper

Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970352
In this paper, spray characteristics were examined to deduce the effect of ambient gas properties. Considered ambient properties were the viscosity μa and density ρa, and thus the kinematic viscosity νa. The objective of this paper is to reveal the effect of compressibility of the ambient gas to spray formation. In the experiments, the changed ranges were And a standard-sac volume nozzle of hole diameter dn =0.25 mm (ln/dn=3.0) was used at constant injection pressure difference (Δp=16.2 MPa). Also the injection pressure was varied in the range of 55 to 120 MPa with a mini-sac volume nozzle of hole diameter dn =0.20 mm (ln/dn =5.5). Several different gases were used to change the ambient viscosity at a room temperature. From the experiments, it is obtained that larger the viscosity, the more the spray spreads in the radial direction, thus the spray angle gets larger and the tip penetration became shorter.
Technical Paper

Effect of Nozzle Configurations for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970355
The spray structure under the pressurized atmosphere at a room temperature was examined by the various photographic methods. The fuel flow inside the nozzle was investigated by the transparent model nozzles. The experimental analysis of sprays yielded the spray dispersing angle, the distribution of fuel droplets inside the spray and the jet intact core length. The obtained results of those spray characteristics showed that the spray structure is divided into two spatial regimes due to their formation mechanisms. Within 10 mm from the nozzle, the spray dispersion is dominated by the turbulent states of fuel which are initiated inside the nozzle. At distance from the nozzle z > 20 - 40 mm, the spray consists of an induced gas vortex street whose length is about half of the spray width. It is proposed that the kinematic viscosity of ambient gas is a important factor which rules the process of momentum exchange form the fuel jet to the ambient gas.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Modelling of Atomization Process in Flash Boiling Spray

1994-10-01
941925
This paper presents the analysis of atomization and vaporization processes in a flash boiling spray based on experimental results obtained from injection systems in the suction manifold of a gasoline engine. Two kinds of liquid fuel, n-Pentane and n-Hexane, were injected into quiescent atmosphere at room-temperature and low-pressure through a pintle type injector with electronic control. The spray characteristics of both fuels below various atmospheric pressures were investigated in detail by taking photography. Then, in the region of flash boiling, where the back pressure was below the saturated vapor pressure of fuel, the bubble nucleation process due to the flash boiling was modelled by both the measurement results of bubble and the nucleation rate equation using the degree of superheat of the liquid fuel.
Technical Paper

Modeling of Diesel Spray Impingement on a Flat Wall

1994-10-01
941894
This paper presents an analysis using a model of the dispersion process of a Diesel spray impinging on a flat wall. The objective is to simulate the spray / wall interaction process inside Diesel engines. This analysis has two parts: one for non - evaporative spray and the other for evaporative spray. For the non - evaporative spray analysis, a single spray of n - tridecane was injected at high - pressure from a single hole nozzle into a quiescent atmosphere at room - temperature. The spray impinged vertically on the wall at room temperature. Thus, the wall temperature Tw was less than the saturation temperature Tsat of the fuel, that is the boiling temperature. A new submodel including fuel film formation on the wall, its breakup process due to droplet impingement and the dispersion process of breakup - droplets was developed. Also, the droplet density distribution was measured experimentally by the laser light extinction method.
Technical Paper

Distribution of Vapor Concentration of Fuel Mixed with High Volatility Component and Low Volatility Component

2010-10-25
2010-01-2274
The premixed charge compression ignition (PCCI) combustion in a compression ignition (Cl) engine is one of countermeasures against the very much severe regulation for exhaust gas of engine out. The authors have been proposed to use the fuel mixed with high volatility component and low volatility component to actualize PCCI combustion. This kind of fuel injected forms a fine and lean spray by the flash boiling phenomena which depends on the pressure and the temperature. The role of the former fuel is to decrease in the generation of particulate matters (PM) and that of the latter one is to break out the ignition. Thus, it is very much significant to find the distribution of vapor concentration of both fuels in a spray. This paper describes both distributions in a single diesel spray by use of the technique of laser induced fluorescence (LIF) in a constant volume chamber with high temperature at high pressure as the fundamental research.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
X