Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Experimental Investigation of Droplet Dynamics and Spray Atomization inside Thermostatic Expansion Valves

2011-04-12
2011-01-0129
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Technical Paper

A Numerical Investigation on Effects of Charge Stratification on HCCI Combustion

2007-10-29
2007-01-4132
A fully coupled multi-dimensional CFD and reduced chemical kinetics model is adopted to investigate the effects of charge stratification on HCCI combustion and emissions. Seven different kinds of imposed stratification have been introduced according to the position of the maximal local fuel/air equivalence ratio in the cylinder at intake valve close. The results show that: The charge stratification results in stratification of the in-cylinder temperature. The former four kinds of stratification, whose maximal local equivalence ratios at intake valve close locate between the cylinder center and half of the cylinder radius, advance ignition timing, reduce the pressure-rise rate, and retard combustion-phasing. But the following three kinds of stratification, whose maximal local equivalence ratios at intake valve close appear between half of the cylinder radius and the cylinder wall, have little effect on the cylinder pressure.
Technical Paper

Investigation of the Effects of Injection Timing on Thermo-Atmosphere Combustion of Methanol

2007-04-16
2007-01-0197
The effects of various injection timing of methanol on thermo-atmosphere combustion of methanol by port injection of dimethyl ether (DME) and direct injection of methanol were experimentally investigated. The experiment results show that, as injection timing is at 6 degree before TDC, the combustion process comprises three stages: low temperature heat release of DME, high temperature heat release of DME and diffusion combustion of methanol. As injection timing increases, premixed combustion proportion of methanol is increased and diffusion combustion proportion is decreased. As injection timing increases to 126 degree before TDC, diffusion combustion of methanol disappears. At this time, the combustion process shows typical two stages heat release of HCCI combustion. As injection timing increases, required DME rate is increased, combustion efficiency and indicated thermal efficiency all first increase and then decrease.
Technical Paper

An Investigation on the Effects of Fuel Chemistry and Engine Operating Conditions on HCCI Engine

2008-06-23
2008-01-1660
A HCCI engine has been run at different operating boundaries conditions with fuels of different RON and MON and different chemistries. The fuels include gasoline, PRF and the mixture of PRF and ethanol. Six operating boundaries conditions are considered, including different intake temperature (Tin), intake pressure (Pin) and engine speed. The experimental results show that, fuel chemistries have different effect on the combustion process at different operating conditions. It is found that CA50 (crank angle at 50% completion of heat release) shows no correlation with either RON or MON at some operating boundaries conditions, but correlates well with the Octane Index (OI) at all conditions. The higher the OI, the more the resistance to auto-ignition and the later is the heat release in the HCCI engine. The operating range is also correlation with the OI. The higher the OI, the higher IMEP can reach.
Technical Paper

The Influence of Boost Pressure and Fuel Chemistry on Combustion and Performance of a HCCI Engine

2008-04-14
2008-01-0051
The influence of boost pressure (Pin) and fuel chemistry on combustion characteristics and performance of homogeneous charge compression ignition (HCCI) engine was experimentally investigated. The tests were carried out in a modified four-cylinder direct injection diesel engine. Four fuels were used during the experiments: 90-octane, 93-octane and 97-octane primary reference fuel (PRF) blend and a commercial gasoline. The boost pressure conditions were set to give 0.1, 0.15 and 0.2MPa of absolute pressure. The results indicate that, with the increase of boost pressure, the start of combustion (SOC) advances, and the cylinder pressure increases. The effects of PRF octane number on SOC are weakened as the boost pressure increased. But the difference of SOC between gasoline and PRF is enlarged with the increase of boost pressure. The successful HCCI operating range is extended to the upper and lower load as the boost pressure increased.
Technical Paper

Diesel Engine Combustion Control: Medium or Heavy EGR?

2010-04-12
2010-01-1125
Exhaust Gas Recirculation (EGR) is an important parameter for control of diesel engine combustion, especially to achieve ultra low NOx emissions. In this paper, the effects of EGR on engine emissions and engine efficiency have been investigated in a heavy-duty diesel engine while changing combustion control parameters, such as injection pressure, injection timing, boost, compression ratio, oxygenated fuel, etc. The engine was operated at 1400 rpm for a cycle fuel rate of 50mg. The results show that NOx emissions strongly depend on the EGR rate. The effects of conventional combustion parameters, such as injection pressure, injection timing, and boost, on NOx emissions become small as the EGR rate is increased. Soot emissions depend strongly on the ignition delay and EGR rate (oxygen concentration). Soot emissions can be reduced by decreasing the compression ratio, increasing the injection pressure, or burning oxygenated fuel.
Technical Paper

An Investigation of Different Ported Fuel Injection Strategies and Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging

2010-04-12
2010-01-0163
The purpose of this study was to gain a better understanding of the effects of port fuel injection strategies and thermal stratification on the HCCI combustion processes. Experiments were conducted in a single-cylinder HCCI engine modified with windows in the combustion chamber for optical access. Two-dimensional images of the chemiluminescence were captured using an intensified CCD camera in order to understand the spatial distribution of the combustion. N-heptane was used as the test fuel. The experimental data consisting of the in-cylinder pressure, heat release rate, chemiluminescence images all indicate that the different port fuel injection strategies result in different charge distributions in the combustion chamber, and thus affect the auto-ignition timing, chemiluminescence intensity, and combustion processes. Under higher intake temperature conditions, the injection strategies have less effect on the combustion processes due to improved mixing.
Technical Paper

Turbocharged diesel/CNG Dual-fuel Engines with Intercooler: Combustion, Emissions and Performance

2003-10-27
2003-01-3082
A yc6112ZLQ turbocharged 6 cylinder engine with intercooler was converted to operate in dual fuel mode with compressed natural gas (CNG) and pilot diesel. The influence of the CNG ratio, pilot diesel injection advance (ADC) and intake temperature after intercooler on the combustion process, emissions and engine performance was investigated. The results show that the combustion process of dual-fuel engines is faster than diesel engine. Both the ignition timing of the pilot fuel and the excess air ratio of total fuel λ dominate the combustion characteristics of duel-fuel engines. With the increase of CNG ratio, the pressure and temperature in cylinder decrease at rated mode, but increase at torque and low speed modes. With advanced the pilot injection timing or increased the intake temperature, the cylinder pressure and temperature increase.
Technical Paper

Experimental Study on the Combustion Process of Dimethyl Ether (DME)

2003-10-27
2003-01-3194
Studies on combustion process of Dimethyl Ether (DME) were carried out on a constant volume combustion bomb (CVCB) and a visualization engine, and the photograph of combustion of DME was taken by high speed digital CCD. The results show that the ignition delay of DME is shorter than that of diesel fuel. When the fuel delivery amounts of DME and diesel in volume are the same, the combustion duration of DME is shorter than that of diesel fuel, and the flame temperature of DME is lower than that of diesel. At the end of combustion, the second injection occurred. The results of high-speed photograph in visualization engine show that, as soon as DME leaves the nozzle, it evaporates rapidly, and under the effect of air swirl, the spray“core” is blown off. Compared to diesel, the penetration of DME is shorter, and the wall combustion of DME is apparently smaller.
Technical Paper

Spray and Atomization Characterization of a Micro-Variable Circular-Orifice (MVCO) Fuel Injector

2011-04-12
2011-01-0679
HCCI/PCCI combustion concepts have been demonstrated for both high brake thermal efficiency and low engine-out emissions. However, these advanced combustion concepts still could not be fully utilized partially due to the limitations of conventional fixed spray angle nozzle designs for issues related to wall wetting for early injections. The micro-variable circular orifice (MVCO) fuel injector provides variable spray angles, variable orifice areas, and variable spray patterns. The MVCO provides optimized spray patterns to minimize combustion chamber surface-wetting, oil dilution and emissions. Designed with a concise structure, MVCO can significantly extend the operation maps of high efficiency early HCCI/PCCI combustion, and enable optimization of a dual-mode HCCI/PCCI and Accelerated Diffusion Combustion (ADC) over full engine operating maps. The MVCO variable spray pattern characteristics are analyzed with high speed photographing.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Technical Paper

Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine

2016-10-17
2016-01-2340
An experimental study is carried out to investigate the coupling between dual loop EGR (DL-EGR) and variable geometry turbocharger (VGT) on a heavy-duty commercial diesel engine under different operating conditions and inlet conditions. The effects of VGT rack position and high-pressure (HP) proportion in DL-EGR on engine performance and emissions are studied. The boosting system is a series 2-stage turbocharger with a VGT as the HP-stage. The HP-Proportion in DL-EGR is swept from 0% to 100% while several intake pressure values and EGR rates are fixed by adjusting the VGT position. Results demonstrate that the VGT and HP EGR both have great influence on the exhaust enthalpy and turbocharger efficiency. The exhaust enthalpy and the intake demand have great influence on the DL-EGR split strategy.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine

2017-03-28
2017-01-0741
In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
X