Refine Your Search

Topic

Search Results

Standard

Passenger Car Tire Performance Requirements and Test Procedures

2018-06-29
CURRENT
J918_201806
This SAE Standard provides minimum performance requirements and accompanying uniform laboratory test procedures for evaluating certain essential characteristics of new tires and newly retreaded tires intended for use on passenger cars. (The requirements published in this SAE Standard pertain to tire sizes currently used on American passenger cars and popular sizes used on imported passenger cars. For related information on tire sizes not listed, contact SAE Automotive Headquarters, 18121 East Eight Mile Road, East Detroit, Michigan 48021.)
Standard

PASSENGER CAR TIRE PERFORMANCE REQUIREMENTS AND TEST PROCEDURES

1970-05-01
HISTORICAL
J918_197005
This SAE Standard provides minimum performance requirements and accompanying uniform laboratory test procedures for evaluating certain essential characteristics of new tires and newly retreaded tires intended for use on passenger cars. (The requirements published in this SAE Standard pertain to tire sizes currently used on American passenger cars and popular sizes used on imported passenger cars. For related information on tire sizes not listed, contact Society of Automotive Engineers, Inc., Detroit Branch Office, 18121 East Eight Mile Road, East Detroit, Michigan 48021.)
Standard

Force and Moment Test Method

1998-01-01
HISTORICAL
J1987_199801
This SAE Recommended Practice describes the determination of passenger car and light truck tire force and moment properties on a belt-type flat surface test machine. It is suitable for accurately determining five tire forces and moments in steady-state under free-rolling conditions as a function of slip angle and normal force which are incrementally changed in a given sequence.
Standard

THE MEASUREMENT OF PASSENGER CAR TIRE ROLLING RESISTANCE

1984-06-01
HISTORICAL
J1270_198406
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, and non-steady-state tire operations are excluded from the recommended practice because they are still in the research stage.
Standard

THE MEASUREMENT OF PASSENGER AND LIGHT TRUCK ROLLING RESISTANCE

1985-11-01
HISTORICAL
J1270_198511
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, surface texture, and non-steady-state tire operations are excluded from the Recommended Practice because they are still in the research stage.
Standard

Laboratory Speed Test Procedure for Passenger Car Tires

2019-09-11
CURRENT
J1561_201909
This SAE Recommended Practice provides a method for testing the speed performance of passenger car tires under controlled conditions in the laboratory on a test wheel. This procedure applies to “standard load,” “extra load,” and “T-type high-pressure temporary-use spare” passenger tires.
Standard

Laboratory Speed Test Procedure for Passenger Car Tires

2001-02-26
HISTORICAL
J1561_200102
This SAE Recommended Practice provides a method for testing the speed performance of passenger car tires under controlled conditions in the laboratory on a test wheel. This procedure applies to “standard load,” “extra load,” and “T-type high-pressure temporary-use spare” passenger tires.
Standard

PERFORMANCE REQUIREMENTS FOR SNAP-IN TUBELESS TIRE VALVES

1997-04-01
HISTORICAL
J1205_199704
This SAE Standard for snap-in tubeless tire valves was developed by the qualified engineers in the tire, valve, and automotive industries. It is based upon sound engineering principles, supported by laboratory testing and field experience, to establish acceptable levels of performance criteria for valves.
Standard

METHODS FOR TESTING SNAP-IN TUBELESS TIRE VALVES

1997-04-01
HISTORICAL
J1206_199704
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Methods for Testing Snap-In Tubeless Tire Valves

2018-01-19
CURRENT
J1206_201801
This SAE Standard contains recommended test methods for snap-in tubeless tire valves intended for, but not limited to, highway applications. A snap-in valve is a tire valve having a rigid housing adhered to a resilient body designed to retain and seal the valve in the rim hole.
Standard

Performance Requirements for Snap-In Tubeless Tire Valves

2018-01-19
CURRENT
J1205_201801
This SAE Standard for snap-in tubeless tire valves was developed by the qualified engineers in the tire, valve, and automotive industries. It is based upon sound engineering principles, supported by laboratory testing and field experience, to establish acceptable levels of performance criteria for valves.
Standard

PERFORMANCE REQUIREMENTS FOR SNAP-IN TUBELESS TIRE VALVES

1978-08-01
HISTORICAL
J1205_197808
This performance document for snap-in tubeless tire valves was developed by qualified engineers in the tire, valve, and automotive industries. It is based upon sound engineering principles, supported by laboratory testing and field experience, to establish acceptable levels of performance criteria for valves for use up to 60 psig (415 kPa).
Standard

Laboratory Testing Machines for Measuring the Steady State Force And Moment Properties of Passenger Car Tires

2012-08-31
CURRENT
J1106_201208
This Recommended Practice describes some basic design requirements and operational procedures associated with equipment for laboratory measurement of tire force and moment properties of the full range of passenger car tires. These properties must be known to establish the tire's contribution to vehicle dynamic performance. Many factors influence laboratory tire force and moment measurements. This Recommended Practice was compiled as a guide for equipment design and test operation so that data from different laboratories can be directly compared and applied to vehicle design and tire selection problems. It is recognized that laboratory measurements define performance in a controlled and idealized situation that may not correspond to conditions encountered in a vehicle's operating environment. Several decades of testing experience in different laboratories indicates, however, that these tests can provide a very useful bench mark for evaluation of tire performance.
Standard

LABORATORY TESTING MACHINES FOR MEASURING THE STEADY STATE FORCE AND MOMENT PROPERTIES OF PASSENGER CAR TIRES

1975-01-01
HISTORICAL
J1106_197501
This Recommended Practice describes some basic design requirements and operational procedures associated with equipment for laboratory measurement of tire force and moment properties of the full range of passenger car tires. These properties must be known to establish the tire's contribution to vehicle dynamic performance. Many factors influence laboratory tire force and moment measurements. This Recommended Practice was compiled as a guide for equipment design and test operation so that data from different laboratories can be directly compared and applied to vehicle design and tire selection problems. It is recognized that laboratory measurements define performance in a controlled and idealized situation that may not correspond to conditions encountered in a vehicle's operating environment. Several decades of testing experience in different laboratories indicates, however, that these tests can provide a very useful bench mark for evaluation of tire performance.
Standard

TESTING MACHINES FOR MEASURING THE UNIFORMITY OF PASSENGER CAR TIRES

1969-01-01
HISTORICAL
J332_196901
In recent years the comfort and fatigue of passengers in vehicles has become a major engineering consideration. Among the many factors involved are vibratory and auditory disturbances. Tires participate, among other elements of the vehicle, in exciting vibrations and noises. Furthermore, tires also may generate forces leading to lateral drift of the vehicle. This recommended practice describes the design requirements of equipment for evaluating some of the characteristic excitations of passenger tires causing disturbances in vehicles. The kinds of excitations treated result from nonuniformities in the structure of the tire and have their effect when a vehicle bearing the tire travels on a smooth road. This recommended practice also describes some broad aspects of the use of the equipment and lists precautionary measures that have arisen out of current experience.
X