Refine Your Search

Topic

Search Results

Standard

Electric Vehicle Power Transfer System Using a Mechanized Coupler

2015-06-26
WIP
J3105
This document covers the general physical, electrical, functional, testing, and performance requirements for a mechanized (hands free) conductive power transfer system primarily for transit buses using an overhead coupler capable of, but not limited to, transferring DC power. It defines a conductive power transfer method including the curbside electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface.
Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Use Cases for Diagnostic Communication for Plug-in Electric Vehicles

2017-06-26
CURRENT
J2836/4_201706
This SAE Surface Vehicle Technical Information Report, J2836/4, establishes diagnostic use cases between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). As PEVs are deployed and include both Plug-In Hybrid Electric (PHEV) and Battery Electric (BEV) Vehicle variations, failures of the charging session between the EVSE and PEV may include diagnostics particular to the vehicle variations. This document describes the general information required for diagnostics and J2847/4 will include the detail messages to provide accurate information to the customer and/or service personnel to identify the source of the issue and assist in resolution. Existing vehicle diagnostics can also be added and included during this charging session regarding issues that have occurred or are imminent to the EVSE or PEV, to assist in resolution of these items.
Standard

SAE Electric Vehicle Inductively Coupled Charging

2009-05-28
HISTORICAL
J1773_200905
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies. in the charge coupler). The charge controller signals the charger to stop charging when it determines that the batteries are completely charged or a fault is detected during the charging process.
Standard

SAE Electric Vehicle Inductively Coupled Charging

1999-11-02
HISTORICAL
J1773_199911
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies. in the charge coupler). The charge controller signals the charger to stop charging when it determines that the batteries are completely charged or a fault is detected during the charging process.
Standard

SAE Electric Vehicle Inductively Coupled Charging

2014-06-05
CURRENT
J1773_201406
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2013-12-10
CURRENT
J2847/3_201312
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3™. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2018-11-27
WIP
J2847/3
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3TM. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
Standard

Use Cases for Customer Communication for Plug-in Electric Vehicles

2016-06-02
WIP
J2836/5
This SAE Information Report J2836/5™ establishes the use cases for communications between Plug-In Electric Vehicles (PEV) and their customers. The use case scenarios define the information to be communicated related to customer convenience features for charge on/off control, charge power curtailment, customer preference settings, charging status, EVSE availability/access, and electricity usage. Also addresses customer information resulting from conflicts to customer charging preferences. This document only provides the use cases that define the communications requirements to enable customers to interact with the PEV and to optimize their experience with driving a Plug-In Electric Vehicle. Specifications such as protocols and physical transfer methods for communicating information are not within the scope of this document.
Standard

Use Cases for Customer Communication for Plug-in Electric Vehicles

2015-05-07
CURRENT
J2836/5_201505
This SAE Information Report J2836/5™ establishes the use cases for communications between Plug-In Electric Vehicles (PEV) and their customers. The use case scenarios define the information to be communicated related to customer convenience features for charge on/off control, charge power curtailment, customer preference settings, charging status, EVSE availability/access, and electricity usage. Also addresses customer information resulting from conflicts to customer charging preferences. This document only provides the use cases that define the communications requirements to enable customers to interact with the PEV and to optimize their experience with driving a Plug-In Electric Vehicle. Specifications such as protocols and physical transfer methods for communicating information are not within the scope of this document.
Standard

Use Cases for Plug-In Vehicle Communication as a Distributed Energy Resource

2017-01-18
CURRENT
J2836/3_201701
This SAE Information Report establishes use cases for a Plug-in Electric Vehicle (PEV) communicating with an Energy Management System (EMS) as a Distributed Energy Resource (DER) which must be supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as either a DER or as a power source for loads which are not connected in parallel with the utility grid. Beyond these two specific communication objectives, this document is also intended to serve as a broad guide to the topic of reverse power flow.
Standard

Use Cases for Plug-in Vehicle Communication as a Distributed Energy Resource

2013-01-03
HISTORICAL
J2836/3_201301
This SAE Information Report establishes use cases for a Plug-in Electric Vehicle (PEV) communicating with an Energy Management System (EMS) as a Distributed Energy Resource (DER). The primary purpose of SAE J2836/3™ is to define use cases which must be supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as a distributed energy resource (DER).
Standard

Vehicle Power Test for Electrified Powertrains

2017-09-19
CURRENT
J2908_201709
This document provides test methods for evaluating the maximum power of electrified vehicle powertrain systems by direct measurement at the drive wheel hubs or axles. Additional tests are included specifically for PHEVs to measure electric-only propulsion power and for HEVs to measure electric power assist and regenerative braking. The testing requires either a chassis or hub dynamometer for all driven wheels. Results are processed to provide fair and consistent comparisons of power capabilities among different designs of electrified powertrains. Tests can also be performed on conventional vehicles if precise comparisons to electrified vehicles are desired.
Standard

Performance Characterization of Electrified Powertrain Motor-drive Subsystem

2017-02-15
HISTORICAL
J2907_201702
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2018-02-12
CURRENT
J2907_201802
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Measurement of Hydrogen Gas Emission from Battery-Powered Passenger Cars and Light Trucks During Battery Charging

2008-11-25
CURRENT
J1718_200811
This SAE Recommended Practice describes a procedure for measuring gaseous hydrogen emissions from the aqueous battery system of a battery-powered passenger car or light truck. The purpose of this procedure is to determine what concentrations of hydrogen gas an electric vehicle together with its charger will generate while being charged in a residential garage. Gaseous emissions are measured during a sequence of vehicle tests and laboratory tests that simulate normal and abnormal conditions during operational use. The results of this test may be used to determine whether or not forced air ventilation is required when a particular electric vehicle and its associated battery and charging system are used in a residential garage.
Standard

Measurement of Hydrogen Gas Emission from Battery-Powered Passenger Cars and Light Trucks During Battery Charging

1994-12-01
HISTORICAL
J1718_199412
This SAE Recommended Practice describes a procedure for measuring gaseous hydrogen emissions from the aqueous battery system of a battery-powered passenger car or light truck. The purpose of this procedure is to determine what concentrations of hydrogen gas an electric vehicle together with its charger will generate while being charged in a residential garage. Gaseous emissions are measured during a sequence of vehicle tests and laboratory tests that simulate normal and abnormal conditions during operational use. The results of this test may be used to determine whether or not forced air ventilation is required when a particular electric vehicle and its associated battery and charging system are used in a residential garage.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2015-01-23
CURRENT
J2990/2_201501
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
X