Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measuring Diesel Emissions with a Split Exhaust Configuration

2001-05-07
2001-01-1949
West Virginia University evaluated diesel oxidation catalysts (DOC) and lean-NOX catalysts as part of Diesel Emissions Control-Sulfur Effects (DECSE) project. In order to perform thermal aging of the DOC and lean-NOX catalysts simultaneously and economically, each catalyst was sized to accommodate half of the engine exhaust flow. Simultaneous catalyst aging was then achieved by splitting the engine exhaust into two streams such that approximately half of the total exhaust flowed through the DOC and half through the lean-NOX catalyst. This necessitated splitting the engine exhaust into two streams during emissions measurements. Throttling valves installed in each branch of the split exhaust were adjusted so that approximately half the engine exhaust passed though the active catalyst under evaluation and into a full flow dilution tunnel for emissions measurement.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

The Coaxial Cavity Resonator as a RF IC Engine Ignition Source

2001-03-05
2001-01-0987
The Quarter Wave Coaxial Cavity Resonator (QWCCR) plasma igniter is designed, from previous theoretical work, as an ignition source for an internal combustion engine. The present research has explored the implementation of the QWCCR into an internal combustion (IC) engine. The QWCCR design parameters of inner conductor length, loop geometry, and loop position were varied for two igniters of differing operating frequency. Variations of the QWCCR radio frequency (RF) parameters, as a function of engine geometry, were studied by placing the igniter in a combustion chamber and manually varying the crank position. Three identical igniters were fitted with dielectric inserts and the parameters were studied before and after ignition was sustained in a twin-cylinder engine. Optimal resonator geometries were determined. Radio frequency parameter invariance was found with respect to crank angle and piston distance. The first successful IC engine ignition using a QWCCR was achieved.
Technical Paper

Hardware-Independent Mathematical and Numerical Modeling of a Four Bed Molecular Sieve - Part 1: Modeling and Verification of Gas Adsorption on Zeolite 5A

1996-07-01
961405
A finite-difference gas adsorption computer model for CO2, H2O, and N2 on zeolite 5A is discussed. It is part of an effort to predict results, via simulation, of changing a spacecraft CO2 removal system's operational configuration. The mathematical and numerical modeling approach, with emphasis on identification and independent verification of important adsorption physics, is described. The apparatus used to obtain single and multicomponent isotherms, and the subscale packed column bench test used to derive transfer coefficients and verify the model are described. The favorable comparison of simulation and test results show the potential for predictive capability with this modeling approach.
Technical Paper

A Continuously Variable Power Split Transmission for Automotive Applications

1997-02-24
970687
Continuously variable transmissions, commonly known as CVT's, have been shown to be feasible alternatives to the conventional multi-step gear transmissions (standard or automatic) typically used in automotive applications. Most CVT applications, however, rely on a shaft-to-shaft transmission arrangement, in which the belt-sheave action limits the load capacity of the transmission, particularly at the high power ranges (low speed, high torque). In this paper, a system based on a combined planetary gear train and a continuously variable pulley system is presented. The uniqueness of this arrangement is that the variable pulleys provide a power/torque split and recirculation function, which, when combined with the planetary gear train function, produces a continuously variable power split transmission system.
Technical Paper

Automobile Body Panel Color Measurement Test

1997-02-24
970995
It has been proposed that an automated remote color inspection of automobile body panels is possible with a reasonably precise color measurement. This paper outlines a test of a new 3D color measurement technology as applied to this task and presents the results of the first test. A camera is set up several feet away from a car body; a 3D orientation measuring system takes both 3D and color data from the car. The raw data is presented as a set of 3D graphs; the geometry-corrected data is also provided. Statistical analysis is presented to indicate system precision.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

A Double Planetary Gear Train-CVT Transmission with Multiple Applications

1995-02-01
950094
A family of transmission systems based on a “Planetary Gear - CVT” mechanism is presented here. The systems considered consist of two compound planetary gear trains connected through a CVT pulley system to provide the power/torque split and recirculation function, without the use of additional clutches and/or chain drives. A two degree of freedom system results in which one of the degrees of freedom is directly related to the CVT ratio. The mechanisms considered here combine the gear reduction function of compound planetary gear trains with the continuously variable trans- used as a circulating power control unit. The kinematics and dynamics of this family of systems is presented with emphasis on the belt forces, torques on the various shafts and the overall input/output velocity ratios through the CVT ratio span. Then a parametric analysis is conducted to characterize the effect of the various functional ratios and parameters of the system in terms of the overall performance.
Technical Paper

Investigation of a Radio Frequency Plasma Ignitor for Possible Internal Combustion Engine Use

1997-02-24
970071
This paper outlines the development process of a radio frequency (RF) plasma ignitor and its application to internal combustion engines. The system features a high Q quarter-wave coaxial cavity resonator that serves as an electric field magnifier and as a discharge device. The preliminary characteristics of the cavity have been studied by the construction and operation of larger scaled devices. Testing has been performed using these devices in a testing apparatus operating under ambient conditions. Once an analysis of the large-scale device is complete, a smaller device, more inclined to interfacing with a standard engine, will be constructed and tested on a full scale engine. The final device is intended to operate in the 800-1500 MHz range.
Technical Paper

Zero Dimensional Combustion Modeling of an Axial Vane Rotary Engine

1997-02-24
970069
A zero dimensional combustion model of an axial vane rotary engine has been developed. The engine is a positive displacement mechanism that permits the four “stroke” action to occur in one revolution of the shaft with a minimum number of moving components. Current modeling efforts for this engine require improved estimations of engine parameters such as chamber pressure, chamber wall temperature, gas temperature, and heat loss. The purpose of this investigation was to develop a zero dimensional combustion model that predicts the above-mentioned parameters in a quick and accurate manner for a spark ignition or compression ignition version of the engine. For this effort, NASA's ZMOTTO code was modified. Piston engine data and the results from the modified ZMOTTO code are in good agreement.
Technical Paper

The Rand-Cam Engine: A Pistonless Four Stroke Engine

1994-03-01
940518
The Rand-Cam engine is a positive displacement machine, operating on a four stroke cycle, which consists of a rotor with multiple axial vanes forming combustion chambers as the rotor and vanes rotate in a cam shaped housing. The cam housing, consisting of two “half-housings” or stators, contains a toroidal trough of varying depth machined into each stator. The two stators are phased so that the shallowest point on one trough corresponds to the deepest on the other. A set of six vanes, able to move axially through machined holes in the rotor, traverses the troughs creating six captured zones per side. These zones vary in volume with rotor rotation. Since each trough has two deep sections and two shallow sections with ramps in between, full four stroke operation is obtained between each pair of vanes in each trough, corresponding to twelve power “strokes” per revolution.
Technical Paper

Parametric Modeling and Analysis of a Planetary Gear-CVT Mechanism

1994-03-01
940519
The mechanism considered here, combines the functions of a planetary gear train and a continuously variable transmission (CVT) system, through a circulating power control unit, which results by connecting the sun-gear shaft and the ring-gear rotation through a variable pitch pulley system. The mechanism is simple and does not require clutches for its operation. Three basic configurations are presented, two of them produce a power feedback effect and a third one produces a power split forward, without a “geared neutral” condition. Parametric analysis is carried out in relation to the circulating power split feature in order to to assist in the design of an optimum configuration for light-weight applications. A parametric approach is used to generate a model that can be used to perform parametric sensitivity analysis.
Technical Paper

Rotor Shaft Bearing Analysis for Selected Rand Cam™ Engine Configurations

1995-02-01
950449
Analysis of two types of bearings has been performed for the rotor shaft of the Rand Cam™ engine. Rolling element bearings and a combination of journal and thrust bearings for selected engine configurations have been considered. The engine configurations consist of four, five, six, seven, and eight vanes. The bearing geometry and orientation was also addressed. This analysis is crucial due to the potentially large axial loading on the bearings and the need for the bearing arrangement to be compact and reliable. An emphasis was placed on the combination of fluctuating axial and radial loads and the resulting effect upon the bearings. Tapered roller bearings were found to be effective. However, a combination of journal and thrust bearings is a more compact bearing arrangement for this application. The eight vane configuration is the most desirable configuration based upon the bearing analysis.
Technical Paper

Hydrodynamic Mobility Analysis of the Vane Lift Mechanism for the Rand Cam™ Engine

1995-02-01
950450
In this paper, a new method for the hydro-dynamic analysis of a sliding cylinder in a fully lubricated parallel track is presented. The method is an extension of Booker's “Mobility Method” (developed for cylindrical journal bearings) to the case of sliding cylinders, in which the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the cylinder. In the Rand Cam™ Engine [1]*, the axicycloidal motion of vanes is driven by a rotor and a cylindrical cam, and one of the alternative designs to provide this function is based on a cylindrical pin sliding within a track which follows the profile of the motion of the main cams of the engine. This function is very important for the engine, since it separates the load bearing function from the sealing function left to the apex-like seals.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
Technical Paper

Modeling the Radio Frequency Coaxial Cavity Plasma Ignitor as an Internal Combustion Engine Ignition System

1998-02-23
980168
A quarter-wave radio frequency coaxial cavity plasma ignitor can be used to generate a combustion-initiating energy source in an internal combustion engine. This paper outlines research results on the development of such an ignitor. The system, which operates in the 820 - 900 MHz frequency range, uses a high Q quarter-wave cavity that generates plasma when resonating. Pressure testing has shown that the device can generate plasmas at spark ignition compression pressures. A resonator operating at these frequencies has been attached to a static combustion chamber and modeled numerically in order to determine the operational characteristics of the device in a combustion chamber.
Technical Paper

Thermal Modeling of an Axial Vane Rotary Engine

1998-02-01
980123
A complete three-dimensional thermal finite element analysis has been performed for the Beta version of an axial vane rotary engine. This work investigated the effects of the heat flow for two different geometric designs (kinematic inversions): rotor turning with vane turning and cams turning with a non-rotating vane. The output from a modified zero dimensional combustion code was used to establish the thermal boundary conditions in the finite element model. An iterative procedure between the thermal finite element model and the zero dimensional code was used to obtain the component wall temperature profile. Updating the combustion model wall temperature resulted in different thermal characteristics than those from the constant wall temperature solution. The thermal analysis provided a quantitative comparison of the different geometric versions of the engine, showing where improvements must be made.
Technical Paper

Emissions Comparisons of Twenty-Six Heavy-Duty Vehicles Operated on Conventional and Alternative Fuels

1993-11-01
932952
Gaseous and particulate emissions from heavy-duty vehicles are affected by fuel types, vehicle/engine parameters, driving characteristics, and environmental conditions. Transient chassis tests were conducted on twenty-six heavy-duty vehicles fueled with methanol, compressed natural gas (CNG), #1 diesel, and #2 diesel, using West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory. The vehicles were operated on the central business district (CBD) testing cycle, and regulated emissions of carbon monoxide (CO), total hydrocarbon (HC), nitrogen oxides (NOx), and particulate matter (PM) were measured. Comparisons of regulated emissions results revealed that the vehicles powered on methanol and CNG produced much lower particulate emissions than the conventionally fueled vehicles.
Technical Paper

Crash Analysis Response of a Midsize Car Subjected to Side Impact

1997-02-24
970783
Crashworthiness is a measure of a vehicle's structural integrity during mechanical impact and of its ability to absorb energy and provide occupant protection in crash situations. Finite element modeling has been successfully used to simulate collision events; the present work uses these techniques to simulate the side impact of a mid-size car in order to investigate the crash characteristics of a 45 km/hr impact. Five different analyses were conducted on orthogonal and oblique impacts under varying conditions. The numerical results from the first analysis were compared with published experimental crash results, showing favorable comparisons for this numerical model prediction.
Technical Paper

Piston Motion and Ignition Delay: Details on Coal-Based Fuel Injection and Effects of Mass Leakage

1990-02-01
900388
In a recent study the present authors showed that piston motion in a compression ignition engine can have a small yet significant effect on ignition delay of diesel fuel. In particular, sinusoidal piston motion, or a motion with high dwell near top-dead-center, promotes reduced delay and improved cold starting relative to conventional slider-crank piston motion. This paper extends the analysis to the case of coal-diesel and coal-methanol blends, using experimental data from the thesis available in the literature. Ignition delay was shown again to be reduced with sinusoidal motion. In addition, the effect of piston motion on mass loss was considered. As expected, higher dwell near top-dead-center caused more mass loss, but there is still benefit to ignition delay of unusual piston motions unless the coefficient of leakage past the rings is very large.
X