Refine Your Search

Topic

Search Results

Technical Paper

Modeling of Sensor Performance During Engine Testing

2007-04-16
2007-01-1299
The paper deals with the investigation of pressure, flow and temperature sensor performance under unsteady conditions using advanced 1-D codes for simulation of engine operation. Approach of internal combustion engine (ICE) sensor modeling in an engine simulation code is described. Some new external modules have been developed to couple engine-and-pipe model to sensors. Sensor dynamic and engine dynamic effects are separated by combining a sensor model with an engine model. The models were tuned to match real data with the goal of uncovering the transfer function between the measured signal and the actual signal. Procedure for estimation of the in-cylinder pressure pattern from distorted pattern at sensor location using empirical transfer function is presented. The developed model seems to have a wide application, e.g. for investigation of dynamical characteristics of lambda sensors or gas analyzer probes.
Technical Paper

Development of Design Assistance System and Its Application for Engine Concept Modeling

2011-06-09
2011-37-0030
This article presents results of the Design Assistance System (DASY) development and examples of its application for engine concept modeling. The software (DASY) for creating and maintaining knowledge database was developed. This software is targeted to simplify and speed up the concept design process. The targets were met by providing the high level of flexibility along with a simple user interface. Two examples that show interaction of DASY with computer-aided design (CAD) software are presented. The DASY creates a template for conserving the knowledge acquired during engine design in the past. It provides hints for the future design tasks by offering a data of similar engines, based on experiments and simulations at different levels of complexity and profoundness.
Technical Paper

Development of a Pre-Chamber Ignition System for Light Duty Truck Engine

2018-04-03
2018-01-1147
In this article the development of a combustion system with a fuel-scavenged pre-chamber is described. Such a system is commonly used in large-bore engines operated with extremely lean mixtures. The authors implemented the scavenged pre-chamber into a light duty truck-size engine with a bore of 102 mm. The lean burn strategy is intended to achieve very low nitrogen oxide (NOx) emissions at low load. At full load a stoichiometric mixture strategy is applied to achieve sufficient power density while simultaneously enabling the use of a relatively simple three-way catalytic converter for exhaust gas aftertreatment. This work outlines the pre-chamber design features and introduces the results of an experimental investigation of the effect of pre-chamber ignition on a single cylinder testing engine.
Technical Paper

Dual Fuel Combustion Model for a Large Low-Speed 2-Stroke Engine

2016-04-05
2016-01-0770
A quasi-dimensional dual fuel combustion model is proposed for a large 2-stroke marine engine. The introduced concept accounts for both diffusion combustion of the liquid pilot fuel and the flame front propagation throughout the gaseous premixed charge. For the pilot fuel case a common integral formulation defines the ignition delay whereas a time scale approach is incorporated for the combustion progress modeling. In order to capture spatial differences given by the scavenging process and the admission of the gaseous fuel, the cylinder volume is discretized into a number of zones. The laws of conservation are applied to calculate the thermodynamic conditions and the fuel concentration distribution. Subsequently, the ignition delay of the gaseous fuel-air mixture is determined by the use of tabulated kinetics and the ensuing oxidation is described by a flame velocity correlation.
Technical Paper

Dynamic Optimization of the E-Vehicle Route Profile

2016-04-05
2016-01-0156
Current vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and larger fleets. Thanks to mechatronic design of vehicles and their components and availability of high capacity data connection with computational centers (clouds), there are many means to optimize their performance, both by planning prior the trip and recalculations during the route. Although many aspects of this opportunity were already addressed, the paper shows an approach developed to further increase the range of e-vehicle operation. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route, vehicle and dynamic optimization. The most important part of the procedure is performed in the cloud, using both computational power and rich information resources.
Technical Paper

Simulation of a Small Turbocharged Gasoline Engine in Transient Operation

2004-03-08
2004-01-0995
The paper describes experience obtained with a GT-Power code used for a downsized turbocharged gasoline engine modeling. The steady-performance model, calibrated by preliminary experiments, has been modified to the transient response one. Knock limit prediction has been used for compression ratio and boost pressure optimization. New authors′ models have been developed for extrapolation of compressor and turbine maps to cover the field of operation modes during a typical transient response. GT-Power control elements ensured a realistic engine response to accelerator, brake or clutch positions. The Driver element could drive various speed schedules such as maximum acceleration mode, engine braking mode or the European fuel-consumption/emission test.
Technical Paper

Simulation of a COMPREX® Pressure Exchanger in a 1-D Code

2004-03-08
2004-01-1000
The paper describes techniques used for optimization of timing, shaping and control of pressure wave exchangers including the prediction of pressure-flow rate characteristics of these devices. BBC Baden and ETH Zürich originally proposed them in 60's using the direct pressure exchange between exhaust gas and fresh air in a narrow channel (the COMPREX® device). A technique allowing COMPREX® pressure exchanger to be simulated in detail in a commercially available 1-D cycle simulation tool has been developed. Before the design of a specific exchanger is started the layout must be carefully optimized concerning distribution gear for both fresh air and exhaust gas. Simulation facilities provided by advanced 1-D codes like GT-Power from Gamma Technologies create a valuable tool to do this task and to find alternative design solutions.
Technical Paper

Eulerian Multidimensional Model for Computing the Fuel Sprays

2004-03-08
2004-01-0537
An Eulerian multidimensional model has been developed for computing the behavior of fuel sprays in direct injection internal combustion engines. The model involves a description of all basic processes that take place in two-phase flow with inter-phase exchanges of mass, momentum, and energy. Both the multi-component compressible gas-phase flow as well as the droplet-phase flow equations are solved in Eulerian coordinates. Basic laws of conservation are formulated on finite volumes with arbitrarily movable boundaries to facilitate the modeling of movable boundary problems. The model features a detailed description of droplet-phase accounting for droplet mass change due to evaporation and with possibility of incorporation of potential droplet breakup, collisions, and coalescence. The application chosen to demonstrate the predictive capabilities of the developed model is the injection of hollow-cone spray into high-density air in a cylindrical chamber with moving boundary.
Technical Paper

Simulation of Pulsating Flow Unsteady Operation of a Turbocharger Radial Turbine

2008-04-14
2008-01-0295
The aim of the current contribution is to develop a tool for the improvement of accuracy of turbocharger turbine simulation during matching of a turbocharger to an engine. The paper demonstrates the possibility of unsteady turbine simulation in pulsating flow caused by an internal combustion engine using the basic modules of generalized 1-D manifold solver with entities (pipes, channels) under centrifugal acceleration in general direction and under non-uniform angular speed, which has not yet been explored. The developed model extrapolates steady operation turbine maps by this way. It uses 1-D model parameters identified from steady flow experiments. Unlike the lumped-parameter standard models of turbocharger turbines, the model takes into account complete 1-D features of a turbine flow path including arbitrary shape of turbine impeller vanes.
Technical Paper

Multilevel Predictive Models of IC Engine for Model Predictive Control Implementation

2008-04-14
2008-01-0209
The paper deals with model based predictive control of combustion engines. Nonlinear black-box predictive models based on neuro-fuzzy approach are utilized. The structure of the models is optimized within an identification process. The nonlinear models are locally linearized and consequently used for the efficient on-line computation of forthcoming control actions. In desire to respect a fact that the speed of input-output response may vary significantly for different input/output groups, multilevel predictive models are proposed. Predictive control is again applied to approximate the desired behavior of chosen output variables. Potential algebraical constraints between different prediction layers are involved in the control algorithm using quadratic programming. The control scheme is optimized using simplified fast simulation model.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

Combining Thermodynamics and Design Optimization for Finding ICE Downsizing Limits

2014-04-01
2014-01-1098
The mass and overall dimensions of massively downsized engines for very high bmep (up to 35 bar) cannot be estimated by scaling of designs already available. Simulation methods coupling different levels of method profoundness, as 1-D methods, e.g., GT Suite/GT Power with in-house codes for engine mechanical efficiency assessment and preliminary design of boosting devices (a virtual compressor and a turbine), were used together with optimization codes based on genetic algorithms. Simultaneously, the impact of optimum cycle on cranktrain components dimensions (especially cylinder bore spacing), mass and inertia force loads were estimated since the results were systematically stored and analyzed in Design Assistance System DASY, developed by the authors for purposes of early-stage conceptual design. General thermodynamic cycles were defined by limiting parameters (bmep, burning duration, engine speed and turbocharger efficiency only).
Technical Paper

Physical Model of a Twin-scroll Turbine with Unsteady Flow

2015-04-14
2015-01-1718
The paper describes a way to a 1-D central streamline model of a radial turbine flow, suitable for twin-scroll description and based on approximation of real physics of flow mixing and energy transformation. The original 1-D model of a single scroll turbine, described earlier in numerous SAE papers, has been amended by twin-scroll nozzles (both vaneless or with blade cascades) and mixing of individual partitions of flows upstream of additional vaneless nozzle and an impeller. This model is transferable to 1-D unsteady simulations as it is (i.e., using quasi-steady approach) or using 1-D unsteady solvers. It has suitable features even for more detailed description of turbine flows and energy transformation. The first results of pulse influence on turbine maps delivered expected results consisting of complicated interaction between individual losses.
Technical Paper

Investigation of Radial Turbocharger Turbine Characteristics under Real Conditions

2009-04-20
2009-01-0311
The paper deals with investigation of flow characteristics of turbocharger turbine under real operating conditions on engine by means of combination of experimental data and advanced 1-D code for combustion engine simulation. Coupling simulations tools with the results of measurements provides the engineers with data which are difficult or impossible to measure. For instance by means of a three pressure analysis (TPA) applicable on engine cylinder the engineers can obtain burn rate, valve flow and residual gas compound from measured pressure traces in cylinder and at inlet and outlet ports. A method for turbocharger turbine on engine identification similar in principle to the three pressure analysis has been applied on radial turbine with variable geometry. A new computational module has been developed to allow identification of instantaneous flow and efficiency characteristics of the turbine.
Technical Paper

Improved Simulation of Transient Engine Operations at Unsteady Speed Combining 1-D and 3-D Modeling

2009-04-20
2009-01-1109
The new simulation tool consists of an iterative loop of a 3-D code in parallel to a 1-D code that is employed to simulate transient engine cycles. The 1-D code yields the basic pattern of initial and boundary conditions and the 3-D simulations at several typical engine operating points are used to crosscheck the performance as well as aid in the model calibration. A flexible regression model of the fuel burn rate and the associated ROHR has been developed in conjunction with the 3-D simulations using a combination of three added Vibe functions. The emissions at the end of the expansion stroke are also predicted. The parameters of the Vibe functions and emissions are found via nonlinear regression based on state parameters such as engine speed, relative A/F ratio, EGR/rest gas contents, injection timings, etc. Additional 3-D simulations that are made at specific engine operating points complement this compact burn rate parameter library.
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Journal Article

Comparison of Lumped and Unsteady 1-D Models for Simulation of a Radial Turbine

2009-04-20
2009-01-0303
The physical 1-D model of a radial turbine consists of a set of gas ducts featuring total pressure and/or temperature changes and losses. Therefore, the wave propagation and filling/emptying plays a significant role if a turbine is subjected to unsteady gas flow. The results of unsteady turbine simulation using the basic modules of generalized 1-D manifold solver in GT Power are demonstrated. The turbine model calibration parameters can be identified by means of 1-D steady model used in optimization code loop. The examples of model results are compared to steady flow map predictions of turbine efficiency and engine pumping loop work. The model may be used for prediction of turbine data in out-of-design points as presented in the paper. The other important role of a model, however, is an accurate evaluation of turbine parameters from pressure and speed measurements at an engine in operation.
Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

Application of Advanced Simulation Methods and Their Combination with Experiments to Modeling of Hydrogen Fueled Engine Emission Potentials

2002-03-04
2002-01-0373
The paper deals with an application of advanced simulation methods to modeling of hydrogen fueled engines. Two models have been applied - 0-D algorithm and CFD. The 0-D model has been based on GT-Power code. The CFD model has been based on Advanced Multizone Eulerian Model representing general method of finite volume. The influence of main engine parameters, e.g. air excess, spark timing, compression ratio, on NOx formation and engine efficiency has been investigated. Both models have been calibrated with experimental data. Examples of results and comparison with experiments are shown. The means of reducing NOx formation are discussed.
Technical Paper

Computer Aided Configuration Design of Internal Combustion Engines - CED System

2002-03-04
2002-01-0903
The paper describes patterns of algorithms for different innovative levels of design at parametric, configuration and conceptual levels. They can be applied to Computer-aided Engine Design (CED). Data structures, process simulation hierarchy, used modules of engine simulation and needs for their further development are described. An example of advanced thermodynamics modeling of combustion engines is included.
X