Refine Your Search

Topic

Search Results

Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

Material Identification using Successive Response Surface Methodology, with Application to a Human Femur Subjected to Three-Point Bending Loading

2006-04-03
2006-01-0063
Material and structural properties of human tissues under impact loading are needed for the development of physical and computational models used in pedestrian and vehicle occupant protection. Obtaining these global properties directly from the data of biomechanical tests is a challenging task due to nonlinearities of tissue-test setup systems. The objective of this study was to develop subject-specific finite element (FE) techniques for material identification of human tissues using Successive Response Surface Methodology. As example, the test data of a human femur in three-point bending is used to identify parameters of cortical bone. Good global and local predictions of the optimized FE model demonstrate the utility and effectiveness of this new material identification approach.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

Influence of Vehicle Body Type on Pedestrian Injury Distribution

2005-04-11
2005-01-1876
Pedestrian impact protection has been a growing area of research over the past twenty or more years. The results from many studies have shown the importance of providing protection to vulnerable road users as a means of reducing roadway fatalities. Most of this research has focused on the vehicle fleet as a whole in datasets that are dominated by passenger cars (cars). Historically, the influence of vehicle body type on injury distribution patterns for pedestrians has not been a primary research focus. In this study we used the Pedestrian Crash Data Study (PCDS) database of detailed pedestrian crash investigations to identify how injury patterns differ for pedestrians struck by light trucks, vans, and sport utility vehicles (LTVs) from those struck by cars. AIS 2+ and 3+ injuries for each segment of vehicles were mapped back to both the body region of the pedestrian injured and the vehicle source linked to that injury in the PCDS database.
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: PMHS Response

2014-11-10
2014-22-0011
The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions.
Technical Paper

A Finite Element Model of the Lower Limb for Simulating Pedestrian Impacts

2005-11-09
2005-22-0008
A finite element (FE) model of the lower limb was developed to improve the understanding of injury mechanisms of thigh, knee, and leg during car-to-pedestrian impacts and to aid in the design of injury countermeasures for vehicle front-ends. The geometry of the model was reconstructed from CT scans of the Visible Human Project Database and commercial anatomical databases. The geometry and mass were scaled to those of a 50th percentile male and the entire lower limb was positioned in a standing position according to the published anthropometric references. A "structural approach" was utilized to generate the FE mesh using mostly hexahedral and quadrilateral elements to enhance the computational efficiency of the model. The material properties were selected based on a synthesis on current knowledge of the constitutive models for each tissue.
Technical Paper

Internal vs. External Chest Deformation Response to Shoulder Belt Loading, Part 1: Table-Top Tests

2009-04-20
2009-01-0393
This study presents a detailed comparison of internally and externally measured chest deflections resulting from eight tests conducted on three male post mortem human subjects. A hydraulically driven shoulder belt loaded the anterior thorax under a fixed spine condition while displacement data were obtained via a high-speed 16-camera motion capture system (VICON MX™). Comparison of belt displacement and sternal displacement measured at the bone surface provided a method for quantifying effective change in superficial soft tissue depth at the mid sternum under belt loading. The relationship between the external displacement and the decrease in the effective superficial tissue depth was found to be monotonic and nonlinear. At 65 mm of mid-sternal posterior displacement measured externally, the effective thickness of the superficial tissues and air gap between the belt and the skin had decreased by 14 mm relative to the unloaded state.
Technical Paper

Thoracic Response to Shoulder Belt Loading: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs

2009-04-20
2009-01-0384
Two post-mortem human subjects were subjected to dynamic, non-injurious (up to 20% chest deflection) anterior shoulder belt loading at 0.5 m/s and 0.9 m/s loading rates. The human surrogates were mounted to a stationary apparatus that supported the spine and shoulder in a configuration comparable to that achieved in a 48 km/h sled test at the time of maximum chest deformation. A hydraulically driven shoulder belt was used to load the anterior thorax which was instrumented with a load cell for measuring reaction force and uniaxial strain gages at the 4th and 8th ribs. In addition, the deformation of the chest was measured using a 16- camera Vicon 3D motion capture system. In order to investigate the chest deformation pattern and ribcage loading in greater detail, a human finite element (FE) model of the thorax was used to simulate the tests.
Technical Paper

Comprehensive Computational Rollover Sensitivity Study Part 2: Influence of Vehicle, Crash, and Occupant Parameters on Head, Neck, and Thorax Response

2011-04-12
2011-01-1115
Fatalities resulting from vehicle rollover events account for over one-third of all U.S. motor vehicle occupant fatalities. While a great deal of research has been directed towards the rollover problem, few studies have attempted to determine the sensitivity of occupant injury risk to variations in the vehicle (roof strength), crash (kinematic conditions at roof-to-ground contact), and occupant (anthropometry, position and posture) parameters that define the conditions of the crash. A two-part computational study was developed to examine the sensitivity of injury risk to changes in these parameters. The first part of this study, the Crash Parameter Sensitivity Study (CPSS), demonstrated the influence of parameters describing the vehicle and the crash on vehicle response using LS-DYNA finite element (FE) simulations.
Technical Paper

Kinematic Analysis of Head/Neck Motion in Pedestrian-Vehicle Collisions Using 6-Degree-of-Freedom Instrumentation Cubes

2006-04-03
2006-01-0681
Given the quantity and severity of head injuries to pedestrians in vehicle-to-pedestrian collisions, human pedestrian finite element models and pedestrian dummies must possess a biofidelic head/neck response to accurately reproduce head-strike kinematics and kinetics. Full-scale pedestrian impact experiments were performed on post-mortem human surrogates (PMHS) using a mid-sized sport utility vehicle and a small sedan. Kinematics of the head and torso were obtained with a six-degree-of-freedom (6DOF) cube, which contained three orthogonally mounted linear accelerometers and three angular rate sensors. The goal of the current study was to present a methodology for analyzing the data obtained from the sensors on each cube, and to use the kinematics data to calculate spatial trajectories, as well as linear velocities and angular accelerations of the head and T1 vertebra.
Technical Paper

Development and Validation of a Finite Element Model for the Polar-II Upper Body

2006-04-03
2006-01-0684
The goal of this study was to develop and validate a finite element (FE) model of the Polar-II pedestrian dummy. An upper body model consisting of the head, neck, shoulder, thorax, and abdomen was coupled with a previously validated model of the lower limb The viscoelastic material properties of the dummy components were determined from dynamic compression tests of shoulder urethane, shoulder rubber and abdominal foam. For validation of the entire upper body, the model was compared with NHTSA response requirements for their advanced frontal dummy (Thor) including head and neck pendulum tests as well as ribcage and abdominal impact tests. In addition, the Polar-II full body FE model was subjected to simulated vehicle-pedestrian impacts that recreated published experiments. Simulated head and pelvis accelerations as well as upper body trajectories reasonably reproduced the experiment.
Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Assessment of the Thor and Hybrid III Crash Dummies: Steering Wheel Rim Impacts to the Upper Abdomen

2004-03-08
2004-01-0310
This investigation explored THOR's force-deflection response to upper abdomen/lower ribcage steering wheel rim impacts in comparison to the Hybrid III and cadaver test subjects. The stationary subjects were impacted by a ballasted surrogate wheel propelled at 4 m/s, a test condition designed to approximate the upper abdomen impacting a steering wheel rim in a frontal crash. Both the standard THOR and the Hybrid III crash dummies were substantially stiffer than the cadavers. Removing THOR's torso skin and foam from the upper abdomen and replacing the standard Hybrid III abdomen with a prototype gel-filled unit produced force-deflection results that were more similar to the cadavers. THOR offers advantages over the Hybrid III because of its ability to measure abdominal deflection. THOR, with modification, would be a useful instrument with which to assess the crashworthiness of steering assemblies and restraint systems in frontal crashes.
Technical Paper

Elimination of Thoracic Muscle Tensing Effects for Frontal Crash Dummies

2005-04-11
2005-01-0307
Current crash dummy biofidelity standards include the estimated effects of tensing the muscles of the thorax. This study reviewed the decision to incorporate muscle tensing by examining relevant past studies and by using an existing mathematical model of thoracic impacts. The study finds evidence that muscle tensing effects are less pronounced than implied by the biofidelity standard response corridors, that the response corridors were improperly modified to include tensing effects, and that tensing of other body regions, such as extremity bracing, may have a much greater effect on the response and injury potential than tensing of only the thoracic musculature. Based on these findings, it is recommended that muscle tensing should be eliminated from thoracic biofidelity requirements until there is sufficient information regarding multi-region muscle tensing response and the capability to incorporate this new data into a crash dummy.
Technical Paper

Injury Risk Functions for the 5th Percentile Female Upper Extremity

2003-03-03
2003-01-0166
The widespread implementation of air bags has increased the incidence of upper extremity injuries in the automotive crash environment. The first step in reducing these injuries is to determine applicable upper extremity injury criteria. The purpose of this paper is to develop injury risk functions for the fifth percentile female forearm, humerus, wrist, and elbow. Injury tolerance data for each anatomical region were gathered from experiments with controlled impact loading of disarticulated small female cadaver upper extremities. This technique allowed for the applied load to be directly quantified. All data were mass scaled to the fifth percentile female. In order to develop the risk functions, the logit distribution was integrated for the uncensored data, while logistic regression and generalized estimating equations statistical analysis techniques were used for censored data.
X