Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Development of Friction Stir Weld Fatigue Evaluation Procedure Using Battelle Structural Stress Method

2014-04-01
2014-01-0909
Weld fatigue evaluation using the mesh-insensitive Battelle structural stress method has been applied to fusion welds, resistance spot welds and non-welded components. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. In this paper, a weld fatigue evaluation procedure using the Battelle structural stress method is proposed for friction stir welds currently being used in the automotive and aerospace industries. The applicability of the Battelle structural stress procedure is demonstrated by comparing fatigue life predictions for friction stir welded specimens to well-documented test data from the literature. Different specimen types, plate thicknesses and loading ratios were analyzed for several aluminum alloys.
Journal Article

The Development of a Simplified Spot Weld Model for Battelle Structural Stress Calculation

2011-04-12
2011-01-0479
The nodal force based Battelle structural stress method has shown its mesh insensitivity in the stress analysis of spot welds as well as fusion welds. In the conventional structural stress simulation procedure, the structural stress is calculated at the nodes along the nugget periphery. However, implementing a nugget into each spot weld is cumbersome and time consuming not only in preparing mesh for FE analysis but also in preparing a series of structural stress calculation after finishing the FE analysis. Therefore, the efficiency of the current Battelle structural stress practice for spot welds can be improved significantly for structures with a large number of spot welds. The simplified modeling procedure presented here delivers reliable structural stresses at spot welds and these stresses can then be utilized for fatigue life prediction using a master S-N Curve approach that is applicable to wide range of spot welding techniques.
Journal Article

Fatigue Evaluation of Notched Plate Specimens by the Battelle Structural Stress Method

2013-04-08
2013-01-1011
In this paper, the applicability of the finite element-based, mesh insensitive Battelle structural stress method is demonstrated for fatigue life predictions of notched specimens (non-welded) with different specimen types, and notch shapes. Well-documented notch fatigue data were analyzed using the Battelle structural stress fatigue evaluation procedure, including notched plate fatigue data for steel and aluminum alloys. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. Here, a similar Battelle structural stress procedure suitable for finite element modeling and service life simulations is proposed for structures with notches. Unlike weld fatigue data, the crack propagation portion of the fatigue life associated with a notch does not always dominant the total number of cycles to failure.
Technical Paper

Application of Weld Fatigue Evaluation Procedure for Considering Multi-Axial Stress States Using the Battelle Structural Stress Method

2017-03-28
2017-01-0338
Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
Technical Paper

Development of Fatigue Evaluation Procedure for Weld-Bonded Joints Using the Battelle Structural Stress Method

2012-04-16
2012-01-0477
In this paper, the Battelle structural stress method for evaluating the fatigue life of welded joints is applied to weld-bonded joints. In order to overcome the complexity of modeling and analyzing both crack paths in weld-bonded joints, a superposition approach is proposed as a reasonable and effective alternative for fatigue design purpose. The superposition approach for evaluating the fatigue life of weld-bonded joints uses two simplified finite element (FE) models: a spot weld model and an adhesive bond model. Each simplified FE model is required to represent the fatigue behavior properly and to minimize the modeling effort without sacrificing the accuracy of the results. The superposition concept can be used in practice if the life evaluation results using the superposition are comparable with the experiments. For the spot welds, the recently developed simplified procedure and master fatigue S-N curve is employed [1].
Technical Paper

Incorporating Weld Residual Stress Effects into Fatigue Life Predictions using the Battelle Structural Stress Method

2018-04-03
2018-01-1212
Welding induced residual stresses are an important factor to consider when evaluating fatigue design of welded automotive parts. Fortunately, design engineers have various residual stress mitigation technologies at their disposal for improving the fatigue performance of these parts. For this purpose, it is essential to understand the relationship between the residual stresses and fatigue performance quantitatively as well as qualitatively. It has been widely accepted that tensile residual stresses in welded structures are as high as the material yield strength level. Therefore, the fatigue strength of welded joints is governed predominantly by the applied stress range, regardless of the load ratio. However, in stress relieved components the tensile residual stress level is not as high, and the weld fatigue behavior is more influenced by the load ratio.
Technical Paper

Re-Evaluation of Fatigue Evaluation Procedures for Weld Root Failure

2019-04-02
2019-01-0529
The FE modeling guidelines and the design master S-N curve for weld root failure was recently proposed using the mesh-insensitive structural stress method. Due to increasing demands to validate the design master S-N curve, various weld root fatigue failure cases were reanalyzed based on well-documented weld root fatigue failure studies including different weld shapes and sizes, plate thickness combinations, and loading modes. Also, the validations of the master S-N curve for weld root failure were conducted using a well-documented structural joint fatigue data set as well as additional fatigue test results. Through the analyses, the proposed weld root failure modeling guidelines and the structural stress-based master S-N curve approach were confirmed to be good to use for practical applications to predict weld root failure. The critical weld size using the ratio of weld size and plate thickness for load carrying cruciform joints under tensile loading was re-evaluated.
Technical Paper

Fatigue Evaluation Procedure Development for Aluminum Alloy Spot Welds Using the Battelle Structural Stress Method

2015-04-14
2015-01-0545
As the automotive industry seeks to remove weight from vehicle chasses to meet increased fuel economy standards, it is increasingly turning to composites and aluminum. In spite of increasing demands for quality aluminum alloy spot welds that enable more fuel efficient automobiles, fatigue evaluation procedures for such welds are not well-established. This article discusses the results of an evaluation Battelle performed of the fatigue characteristics of aluminum alloy spot welds based on experimental data and observations from the literature. In comparison with spot welds in steel alloys, aluminum alloy spot welds exhibit several significant differences including a different hardness distribution at and around the weld, different fatigue failure modes, and more. The effectiveness and applicability of the Battelle structural stress-based simplified procedure for modeling and simulating automotive spot welds has previously been demonstrated by Battelle investigations.
X