Refine Your Search

Topic

Search Results

Technical Paper

Real-Time Automatic Test of AEB with Brake System in the Loop

2018-04-03
2018-01-1450
The limitation of drivers' attention and perception may bring collision dangers, Autonomous Emergency Braking (AEB) can help drivers to avoid the potential collisions through active braking. Since the positive effect of it, motor corporations have begun to equip their vehicles with the system, and regulatory agencies in various countries have introduced test standards. At this stage, the actuator of AEB usually adopts Electronic Stability Program (ESP), but it poor performance of continuous working period and active pressure built-up for all wheels limits its implements. Electromechanical brake booster can realize power assisted brake without relying on the vacuum source and a variety of specific power curves. Moreover it can achieve the active braking with a rapid response, which make it can fulfill requirements of automotive electric and intelligent development.
Technical Paper

Research on a Novel Electro-Hydraulic Brake System and Pressure Control Strategy

2018-04-03
2018-01-0764
Based on the research and analysis of the current brake systems, this paper presents a novel electro-hydraulic brake system, which can better meet the functional requirements. The system mainly contains a master cylinder, two brake hydraulic cylinders and drive motors, two transmission mechanisms, thirteen solenoid valves, pedal force simulator, etc. Since the proposed brake system uses a dual motor along with two brake hydraulic cylinders, it has advantages in providing fast pressure response, flexible working modes, high precision and strong fault tolerance. In order to facilitate the study of pressure control algorithm for the proposed brake system, a mathematical model of the brake system is firstly established, then a multiplexed time-division pressure control algorithm is proposed to realize the simultaneous or partially simultaneous pressure control, which ensures the high precision and short response time.
Technical Paper

ABS Control Algorithm Based on Direct Slip Rate for Hybrid Brake System

2018-04-03
2018-01-0830
The brake-by-wire system (BBW) is better match the new energy vehicle in the future direction of development. The electro-mechanical brake (EMB) is lack of the brake failure backup and need a high 42 V voltage for the power supply. This paper presents a new brake-by-wire hybrid brake system (HBS) with the electro-hydraulic brake (EHB) equipped on the front wheels and the EMB equipped on the rear wheels. The combination of these two brake-by-wire systems has advantages of both the EHB and EMB system. The EMB on the rear wheels totally removing the rear pipes and can be simply mounted. In addition, since the need of brake torque on the rear axle is relatively small, the power supply of EMB can be reduced to 12 V. Meanwhile, the EHB on the front wheels has the failure backup function through the hydraulic line. The HBS can quickly and accurately regulate four wheels brake force of vehicles which can well meet the requirement of antilock brake system (ABS).
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Pressure Optimization Control of Electro-Mechanical Brake System in the Process of ABS Working

2019-04-02
2019-01-1104
The electro-mechanical brake booster (EMBB) and hydraulic control unit (HCU) constitute the electro-mechanical brake system, which can meet the requirements of brake system for intelligent vehicles. It does not need vacuum source, provides active braking function, have high control accuracy and fast response. But it has two electronic control units (ECU), which need coordinated control. When ABS is triggered, the pressure of the master cylinder keeps rising and falling, and the pressure fluctuates greatly. This will lead to noise and reduce the durability of the system. In this paper, a pressure optimization control strategy under ABS condition is proposed. Firstly, the structure and control strategy of EMBB are introduced. Secondly, the braking characteristics without pressure optimization control are analyzed. Thirdly, based on the demand of maximum cylinder pressure, a three-closed-loop pressure optimization control strategy is established.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

Development of Active Control Strategy for Flat Tire Vehicles

2014-04-01
2014-01-0859
This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Technical Paper

Linear Electro-Magnetic Valve Characteristic Analysis and Precise Pressure Control of the Electro-Hydraulic Brake System

2016-04-05
2016-01-0093
With the development of modern vehicle chassis control systems, such as Anti-Lock Brake System (ABS), Acceleration Slip Regulation (ASR), Electronic Stability Control (ESC), and Regenerative Braking System (RBS) for EVs, etc., there comes a new requirement for the vehicle brake system that is the precise control of the wheel brake pressure. The Electro-Hydraulic Brake system (EHB), which owns an ability to adjust four wheels’ brake pressure independently, can be a good match with these systems. However, the traditional control logic of EHB is based on the PWM (Pulse-Width Modulation), which has a low control accuracy of linear electromagnetic valves. Therefore, this paper presents a research of the linear electro-magnetic valve characteristic analysis, and proposes a precise pressure control algorithm of the EHB system with a feed forward and a PID control of linear electro-magnetic valves.
Journal Article

Power Assisted Braking Control Based on a Novel Mechatronic Booster

2016-04-05
2016-01-1644
This paper presents a power assisted braking control based on a novel mechatronic booster system. A brake pedal feel control unit is first discussed which includes a pedal emulator with an angular sensor to detect driver’s pedal travel, a signal processing module with a Kalman filter for sensor signal conditioning, and a driver braking intention detection and behavior recognition module based on the displacement and velocity of the pedal travel. A power assisted braking control is then presented as the core of the system which consists of controls on basic power assist, velocity compensation and friction compensation. The friction is estimated based on a generic algorithm offline. A motor controller is designed to provide the desired torque for the power assist. Finally, a novel mechatronic booster system is designed and built with an experimental platform set up with a widely adopted rapid prototype system using dSPACE products, such as MicroAutoBox, RapidPro, etc.
Journal Article

Network Scheduling for Distributed Controls of Electric Vehicles Considering Actuator Dynamic Characteristics

2017-03-28
2017-01-0019
Electric vehicle (EV) has been regarded as not only an effective solution for environmental issues but also a more controllable and responsible device to driving forces with electric motors and precise torque measurement. For electric vehicle equipped with four in-wheel motors, its tire longitudinal forces can be generated independently and individually with fully utilized tire adhesion at each corner. This type of the electric vehicles has a distributed drive system, and often regarded as an over-actuated system since the number of actuators in general exceeds the control variables. Control allocation (CA) is often considered as an effective means for the control of over-actuated systems. The in-vehicle network technology has been one of the major enablers for the distributed drive systems. The vehicle studied in this research has an electrohydraulic brake system (EHB) on front axle, while an electromechanical brake system (EMB) on rear axle.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Technical Paper

Accurate Speed Control of the DC Motor for Anti-Lock Braking System

2015-04-14
2015-01-0654
The permanent-magnet DC motor, which is directly connected to the hydraulic pump, is a significant component of hydraulic control unit (HCU) in an anti-lock braking system (ABS). It drives the pump to dump the brake fluid from the low-pressure accumulator back to master cylinder and makes sure the pressure decreases of wheel cylinder in ABS control. Obviously, the motor should run fast enough to provide sufficient power and prevent the low-pressure accumulator from fully charging. However, the pump don't need always run at full speed for the consideration of energy conservation and noise reduction. Therefore, it is necessary to accurately regulate the speed of the DC motor in order to improve quality of ABS control. In this paper, an accurate speed control algorithm was developed for the permanent-magnet DC motor of the ABS to implement the performance of the system, reduce the noise and save the energy in the meanwhile.
Journal Article

Evaluation and Design of Electric/Electronic-Architectures of the Electric Vehicle

2016-06-17
2016-01-9143
The evaluation of electric vehicle electric/electronic-architectures (e/e-architectures) is the main topic of this paper. The electric vehicle is chosen as an example system, as it reflects the typical challenges of modern vehicle e/e-architecture development. The development of modern automotive technology also presents another important trend - vehicle electrification. New electric and electronic devices are developed and required in the automotive industry and control commands are exchanged by electric and electronic ones. The energy storage systems (ESS) properly reflect the above two aspects. The energy storage device also takes care of the peak loads, the high load dynamics, and it utilizes the braking energy in order to increase the efficiency. In this work a Li-ion battery and an ultracapacitor both are considered as energy storage devices.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Journal Article

Design and Position Control of a Novel Electric Brake Booster

2018-04-03
2018-01-0812
The electric vehicles and the intelligent vehicles put forward to new requirements for the brake system, such as the vacuum-independent braking, automatic or active braking, and regenerative braking, which are the key link for the vehicle’s safety and economy. However, the traditional vacuum brake booster is no longer able to meet these requirements. In this article, a novel integrated power-assisted actuator of brake system is proposed to satisfy the brake system requirements of the electric vehicles and intelligent vehicles. The electronic brake booster system is designed to achieve the function of boosting pedal force of driver, being independent on vacuum source, supplying autonomous or active braking. It is mainly composed of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, and a reaction disk. The scheme design and power-assisted braking control are the key for the electronic actuator.
Journal Article

Design of Anti-lock Braking System Based on Regenerative Braking for Distributed Drive Electric Vehicle

2018-04-03
2018-01-0816
In this article, the regenerative braking system is designed, which can realize the torque allocation between electric braking and hydraulic braking, where the cost function designed in this article considers factors of braking torque following effect, energy regenerative power, and hydraulic braking consumed power. In addition, a complete anti-lock braking system (ABS) is designed, which is based on regenerative braking. With the optimal slip ratio as control target, target wheel speed, control wheel speed, braking torque control strategy, and enable/disenable control logic of ABS are determined. By MATLAB/Simulink-DYNA4 co-simulation and real vehicle test, the feasibility and applicability of ABS based on regenerative braking are verified, under the condition of small severity of braking.
X