Refine Your Search

Topic

Search Results

Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Journal Article

Coordinated Strategies for Ethanol and Flex Fuel Vehicle Deployment: A Quantitative Assessment of the Feasibility of Biofuel Targets

2010-04-12
2010-01-0735
The goal of this paper is to quantitatively assess the implications of congressionally mandated biofuel targets on requirements for ethanol blending, distribution, and usage in spark ignition engines in the U.S. light-duty vehicle fleet. The “blend wall” is a term that refers to the maximum amount of ethanol that can be blended into the gasoline pool without exceeding the legal volumetric blend limit of 10%. Beyond the blend wall, the additional ethanol fuel must be used in higher blends of ethanol like E85. Once the blend wall is reached, the existing fleet of flex fuel vehicles (FFVs) will be required to use E85 for some percentage of vehicle miles traveled (VMT) in order to achieve the Renewable Fuel Standard (RFS) targets.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

Intake Port Phenomena in a Spark-Ignition Engine at Part Load

1991-10-01
912401
The flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection play a significant role in the mixture preparation process, especially at part load. The backflow of the hot burned gas from the cylinder into the intake port when the intake valve is opened breaks up any liquid film around the inlet valve, influences gas and wall temperatures, and has a major effect on the fuel vaporization process. The backflow of in-cylinder mixture with its residual component during the compression stroke prior to inlet valve closing fills part of the port with gas at higher than fresh mixture temperature. To quantify these phenomena, time-resolved measurements of the hydrocarbon concentration profile along the center-line of the intake port were made with a fast-response flame ionization detector, and of the gas temperature with a fine wire resistance thermometer, in a single-cylinder engine running with premixed propane/air mixture.
Journal Article

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 2-Effective Octane Numbers

2012-04-16
2012-01-1284
Spark Ignited Direct Injection (SI DI) of fuel extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the large in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in direct injection (DI) is therefore especially advantageous due to the high heat of vaporization of ethanol. In addition to the thermal benefit due to charge cooling, ethanol blends also display superior chemical resistance to autoignition, therefore allowing the further extension of knock limits. Unlike the charge cooling benefit which is realized mostly in SI DI engines, the chemical benefit of ethanol blends exists in Port Fuel Injected (PFI) engines as well. The aim of this study is to separate and quantify the effect of fuel chemistry and charge cooling on knock. Using a turbocharged SI engine with both PFI and DI, knock limits were measured for both injection types and five gasoline-ethanol blends.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Technical Paper

Lean SI Engines: The role of combustion variability in defining lean limits

2007-09-16
2007-24-0030
Previous research has shown the potential benefits of running an engine with excess air. The challenges of running lean have also been identified, but not all of them have been fundamentally explained. Under high dilution levels, a lean limit is reached where combustion becomes unstable, significantly deteriorating drivability and engine efficiency, thus limiting the full potential of lean combustion. This paper expands the understanding of lean combustion by explaining the fundamentals behind this rapid rise in combustion variability and how this instability can be reduced. A flame entrainment combustion model was used to explain the fundamentals behind the observed combustion behavior in a comprehensive set of lean gasoline and hydrogen-enhanced cylinder pressure data in an SI engine. The data covered a wide range of operating conditions including different compression ratios, loads, types of dilution, fuels including levels of hydrogen enhancement, and levels of turbulence.
Technical Paper

The Importance of Injection System Characteristics on Hydrocarbon Emissions from a Direct-Injection Stratified-Charge Engine

1990-02-01
900609
The effects of injection variability, low velocity fuel injection, and injector orifice size on unburned hydrocarbon emissions were studied in a direct-injection stratified-charge (DISC) engine. The engine incorporated a combustion process similar to the Texaco Controlled Combustion System (TCCS) and was operated with gasoline. The variability in the amount of fuel injected per cycle was found to have a negligible effect on HC emissions. Changing the amount of fuel injected at low velocity at the end of injection impacted the HC emissions by up to 50%. A positive pressure differential between the injection line and the combustion chamber when the injector needle closed resulted in more fuel injected at low velocity and increased HC emissions. High speed single frame photography was used to observe the end of injection. Injectors with smaller orifices had substantially lower HC emissions than the baseline injector.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Liquid Fuel Flow in the Vicinity of the Intake Valve of a Port-Injected SI Engine

1998-10-19
982471
Liquid fuel flow into the cylinder an important source of hydrocarbon (HC) emissions of an SI engine. This is an especially important HC source during engine warm up. This paper examines the phenomena that determine the inflow of liquid fuel through the intake valve during a simulated start-up procedure. A Phase Doppler Particle Analyzer (PDPA) was used to measure the size and velocity of liquid fuel droplets in the vicinity of the intake valve in a firing transparent flow-visualization engine. These characteristics were measured as a function of engine running time and crank angle position during four stroke cycle. Droplet characteristics were measured at 7 angular positions in 5 planes around the circumference of the intake valve for both open and closed-valve injection. Additionally the cone shaped geometry of the entering liquid fuel spray was visualized using a Planar Laser Induced Fluorescence (PLIF) setup on the same engine.
Technical Paper

The Performance of Future ICE and Fuel Cell Powered Vehicles and Their Potential Fleet Impact

2004-03-08
2004-01-1011
A study at MIT of the energy consumption and greenhouse gas emissions from advanced technology future automobiles has compared fuel cell powered vehicles with equivalent gasoline and diesel internal combustion engine (ICE) powered vehicles [1][2]. Current data regarding IC engine and fuel cell vehicle performance were extrapolated to 2020 to provide optimistic but plausible forecasts of how these technologies might compare. The energy consumed by the vehicle and its corresponding CO2 emissions, the fuel production and distribution energy and CO2 emissions, and the vehicle manufacturing process requirements were all evaluated and combined to give a well-to-wheels coupled with a cradle-to-grave assessment. The assessment results show that significant opportunities are available for improving the efficiency of mainstream gasoline and diesel engines and transmissions, and reducing vehicle resistances.
Technical Paper

Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept

2004-03-08
2004-01-0975
Experiments were performed to identify the knock trends of lean hydrocarbon-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO). These enhanced mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer [1]. Knock trends were determined by measuring the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The knock tendency does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

Effects of Charge Motion Control During Cold Start of SI Engines

2006-10-16
2006-01-3399
An experimental study was performed to investigate the effects of various intake charge motion control valves (CMCVs) on mixture preparation, combustion, and hydrocarbon (HC) emissions during the cold start-up process of a port fuel injected spark ignition (SI) engine. Different charge motions were produced by three differently shaped plates in the CMCV device, each of which blocked off 75% of the engine's intake ports. Time-resolved HC, CO and CO2 concentrations were measured at the exhaust port exit in order to achieve cycle-by-cycle engine-out HC mass and in-cylinder air/fuel ratio. Combustion characteristics were examined through a thermodynamic burn rate analysis. Cold-fluid steady state experiments were carried out with the CMCV open and closed. Enhanced charge motion with the CMCV closed was found to shorten the combustion duration, which caused the location of 50% mass fraction burned (MFB) to occur up to 5° CA earlier for the same spark timing.
Technical Paper

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 1-Quantifying Charge Cooling

2012-04-16
2012-01-1275
Gasoline/ethanol fuel blends have significant synergies with Spark Ignited Direct Injected (SI DI) engines. The higher latent heat of vaporization of ethanol increases charge cooling due to fuel evaporation and thus improves knock onset limits and efficiency. Realizing these benefits, however, can be challenging due to the finite time available for fuel evaporation and mixing. A methodology was developed to quantify how much in-cylinder charge cooling takes place in an engine for different gasoline/ethanol blends. Using a turbocharged SI engine with both Port Fuel Injection (PFI) and Direct Injection (DI), knock onset limits were measured for different intake air temperatures for both types of injection and five gasoline/ethanol blends. The superior charge cooling in DI compared to PFI for the same fuel resulted in pushing knock onset limits to higher in-cylinder maximum pressures. Knock onset is used as a diagnostic of charge cooling.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement

2006-04-03
2006-01-0228
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
X