Refine Your Search

Topic

Search Results

Journal Article

Visual Recovery and Discomfort Following Exposure to Oncoming Headlamps

2009-04-20
2009-01-0546
A field experiment was performed to measure the effects of oncoming illuminance profiles with different photometric and temporal characteristics on visual recovery and subjective discomfort. Target detection time was correlated with the dosage, and rated discomfort was correlated with the peak illuminance of each profile. Older subjects generally had longer recovery times, but there were no differences between the age groups in terms of rated discomfort. The results suggest that discomfort glare is not predictive of visual disability and that control of luminous intensity at isolated points within the distribution of headlamps alone is not sufficient to minimize glare recovery.
Journal Article

Vehicle Lighting and Modern Roundabouts: Implications for Pedestrian Safety

2012-04-16
2012-01-0268
Modern roundabout facilities are increasing in number throughout North America and the world. Appropriate vehicle lighting, including the application of intelligent headlighting systems, might help support safe, efficient driving behavior while navigating through these new intersection types. We present the results of a field study conducted to compare different vehicle lighting systems in terms of drivers' ability to detect and identify pedestrian activity, under different amounts of illumination from fixed outdoor lighting systems. The results are compared to analytical predictions of visibility using a validated visual performance model.
Journal Article

Headlamp Levelness and Glare: Preliminary Analyses Based on Field Data

2013-04-08
2013-01-0749
Vehicle headlamps are essential for driver safety at night, and technological evolution of headlamps over several decades has brought substantial improvements to driver visibility and comfort. Nonetheless, glare remains an important concern among many in the driving public, perhaps even more so in North America, where requirements for headlamps differ from those in much of the rest of the world. In most of the world, headlamps producing higher luminous flux are required to have automatic leveling and cleaning systems, thought to help reduce glare. The arrival of headlamp systems in the worldwide marketplace with luminous flux values just below those triggering requirements for leveling and cleaning systems will bring new questions about the causes of and countermeasures for glare.
Technical Paper

Rear Signal Lighting: From Research to Standards, Now and in the Future

2007-04-16
2007-01-1229
Rear signal lighting on vehicles has two primary functions: informing other drivers about the presence of a vehicle on the roadway, and alerting those other drivers to intentions of a vehicle's driver before actions such as turning or stopping occur. In the present paper, reports, articles and other technical literature, pertaining to rear lighting signal system photometric requirements and use of dynamic display features, are reviewed. The objective is to synthesize recommendations for configuring rear lighting in order to optimize systems for different ambient weather and lighting conditions, dirt accumulation, and warning functions. Research results from European, North American and Japanese contexts are discussed.
Technical Paper

Real-World Measurement of Headlamp Illumination

2010-04-12
2010-01-0294
We summarize the development and initial deployment of a system that can be mounted along an intersection, curve, drive-in, or parking facility to efficiently gather relevant data about headlamp patterns that might relate to glare or visibility. The system can run autonomously to collect many vehicles per data collection period. The system includes a range finder to capture information when an approaching vehicle is at a specific location, a digital camera to store images of oncoming headlamp position (i.e., mounting height), two arrays of light sensors to measure the vertical headlamp illumination profile (e.g., angular position of headlamp beam cutoff or maximum luminous intensity), and a color-calibrated illuminance meter at the angular location of an oncoming driver's eyes. From the headlamp mounting height data and the vertical cutoff location data, an estimate of the headlamp aim distribution can be made.
Technical Paper

Visibility from Vehicle Headlamps and Roadway Lighting in Urban, Suburban and Rural Locations

2010-04-12
2010-01-0298
In real world driving conditions, illumination from vehicle headlamps and, when present, from fixed roadway lighting combines to provide visibility for the driver. We present analyses of visibility along a representative roadway intersection scenario with median and market-weighted headlamp beam patterns including halogen and high intensity discharge headlamp beam patterns, and high beam headlamp beam patterns. Also investigated are interactions with the spatial extent of roadway lighting, either as part of a continuous lighting system or as a single roadway luminaire at the intersection junction, and the role of ambient illuminance from urban environments. The results of the analyses show the large influence of ambient illuminance from urban areas on the visibility of relevant targets, and show differential advantages of different headlamp beam patterns for different target locations where pedestrians might be encountered.
Technical Paper

Discomfort and Disability Glare from Halogen and HID Headlamp Systems

2002-03-04
2002-01-0010
Illumination from high intensity discharge (HID) headlamps differs from halogen headlamp illumination in two important ways: HID headlamps have higher overall light output and a spectral power distribution that differs from halogen headlamps. These differences have been hypothesized to result in superior visibility with HID headlamps and most particularly in the periphery. These same factors, though, have also been conjectured to result in increased glare for drivers facing HID headlamps in oncoming driving situations. The present paper outlines a series of experimental investigations using halogen, HID, and blue-filtered halogen illumination to measure their relative impact on discomfort glare and disability glare under conditions matching those that might be experienced by oncoming drivers at night. Discomfort glare is determined using the scale devised by de Boer; disability glare is determined by measuring subjects' contrast sensitivity under different lighting conditions.
Technical Paper

Visual Benefits of High-Intensity Discharge Automotive Forward Lighting

2002-03-04
2002-01-0259
Recent studies have shown that high-intensity discharge (HID) headlamps provide visual benefits to the vehicle operator that may lead to greater nighttime driving safety.[1] This paper is an extension of that work to further examine the role of beam pattern. An experimental field investigation is described that explores the visual performance aspects of HID forward lighting systems meeting North American beam pattern standards. This study further explores and quantifies the overall benefits of HID systems by direct comparison to conventional halogen systems. It examines and compares two systems producing typical Society of Automotive Engineers (SAE) J1383 beam patterns. Subjects perform a visual tracking task, cognitively similar to driving, while seated in the driver's seat of a test vehicle. Simultaneously, small targets located at various angles in the periphery are activated, with subjects releasing a switch upon detection so that reaction times can be measured.
Technical Paper

Spectral Effects of High-Intensity Discharge Automotive Forward Lighting on Visual Performance

2003-03-03
2003-01-0559
Recent studies have shown that high-intensity discharge (HID) headlamps provide visual benefits to the vehicle operator that may lead to increased nighttime driving safety. An experimental field investigation is described that further investigates the visual performance aspects of HID forward lighting systems to isolate and examine the role of lamp spectral distribution under realistic nighttime driving conditions. This study examines lamp spectral distribution by direct comparison of HID source spectra to one that simulates a conventional halogen source. Two additional lamp spectra are also included in this study, a “cool” distribution with a high percentage of short wavelength visible light and a “warm” distribution with a high percentage of long wavelength visible light. Subjects perform a visual tracking task, cognitively similar to driving, while seated in the driver's seat of a test vehicle.
Technical Paper

Effects of Sweeping, Color and Luminance Distribution on Response to Automotive Stop Lamps

2002-03-04
2002-01-0911
Immediate response to stop lamps when driving is crucial to roadway safety. Previous research has demonstrated that neon and light emitting diode (LED) stop lamps that have a dynamic sweeping luminance distribution can be just as or more effective than standard stop lamps. Sweeping neon and LED lamps with sweep-up times equal to or less than 100 ms resulted in reaction times equal to or shorter than those obtained with a conventional, non-sweeping incandescent stop lamp. At the same time, an LED stop lamp having the same far-field luminous intensity characteristics as the neon lamp, resulted in shorter reaction times than the neon lamp. The LED stop lamp differed from the neon lamp in two important ways. First, its color was different; the LED lamp had a dominant wavelength of about 630 nm, in comparison to the neon lamp with a dominant wavelength of about 615 nm.
Technical Paper

Visual Benefits of Blue Coated Lamps for Automotive Forward Lighting

2003-03-03
2003-01-0930
A research project has been completed to determine if commercially available blue coated lamps provide visual benefit for nighttime driving over standard tungsten halogen lamps. As an esthetic option, tungsten halogen lamps with an absorptive coating have been developed to mimic the appearance of HID lamps. The transmission of these coated lamp results in a continuous output spectrum, like standard tungsten halogen, but with a lower “yellow” content, giving an appearance similar to HID lamps. Aside from esthetic reasons for using blue coated lamps, there is also evidence that the spectral output may provide visual benefits over standard tungsten halogen lamps in nighttime driving. While driving at night, off-axis or peripheral vision is in the mesopic response range and the eye's sensitivity shifts towards shorter wavelengths or “blue” light.
Technical Paper

Luminance versus Luminous Intensity as a Metric for Discomfort Glare

2011-04-12
2011-01-0111
Photometric performance specifications for vehicle headlamp specifications in North America are given in terms of luminous intensity values at various angular locations with the objective of providing sufficient illumination for forward visibility while controlling for glare toward oncoming and preceding vehicle drivers. Abundant evidence suggests that luminous intensity is an appropriate metric for characterizing the degree to which a headlamp can produce disability glare through veiling luminances under a wide range of viewing conditions. Notwithstanding that discomfort glare exhibits a differential spectral sensitivity from the photopic luminous efficiency function used to characterize light, luminous intensity does not always predict discomfort glare. For example, the luminance of the luminous element(s) can be more predictive of discomfort when headlamps are viewed from relative close distances.
Technical Paper

Public Perceptions of Vehicle Headlamps: Visibility and Glare

2011-04-12
2011-01-0110
Recent technological developments have begun to add a number of new configurations for vehicle forward lighting to the realm of possibility, including high-intensity discharge and light-emitting diode headlamps, and adaptive forward-lighting systems. These systems can offer substantial differences in performance and appearance from conventional filament-based headlamps that have been ubiquitous for many decades. These differences have not gone unnoticed by the U.S. driving public. A review of newspaper articles published during the past several years was conducted in order to assess public perceptions of vehicle headlamps in terms of their ability to support visibility and their impacts on headlamp glare.
Technical Paper

Assessment of Adaptive Driving Beam Photometric Performance

2016-04-05
2016-01-1408
Although adaptive driving beam headlight systems are not presently defined in North American headlighting standards, evidence for the potential safety benefits of these systems is increasing. Field measurements of the photometric performance of an adaptive driving bean system were made in response to simulated headlight and tail light conditions. Roadway geometries were varied and multiple measurements for many conditions were made to assess repeatability of measurements. The results of the testing are summarized in the context of validating the likely safety impacts of these systems and of providing recommendations for standardized measurement conditions to ensure reliability.
Technical Paper

Adaptive High Beam Systems: Visual Performance and Safety Effects

2014-04-01
2014-01-0431
Present standards for vehicle forward lighting specify two headlamp beam patterns: a low beam when driving in the presence of other nearby vehicles, and a high beam when there is not a concern for producing glare to other drivers. Adaptive lighting technologies such as curve lighting systems with steerable headlamps may be related to increments in safety according to the Insurance Institute for Highway Safety, but isolating the effects of lighting is difficult. Recent analyses suggest that visibility improvements from adaptive curve lighting systems might reduce nighttime crashes along curves by 2%-3%. More advanced systems such as adaptive high-beam systems that reduce high-beam headlamp intensity toward oncoming drivers are not presently allowed in the U.S. The purpose of the present study is to analyze visual performance benefits and quantify potential safety benefits from adaptive high-beam headlamp systems.
Technical Paper

Discomfort Glare from Headlamps: Interactions Among Spectrum, Control of Gaze and Background Light Level

2003-03-03
2003-01-0296
Discomfort glare while driving at night might have implications for long-term fatigue and ultimately, driving performance and safety. The intensity of oncoming headlights, their spectral power distribution, the location of the lights in the field of view, and the ambient illumination conditions can all impact feelings of discomfort while driving at night. Not surprisingly, light sources with higher intensities are perceived as more glaring. Similarly, perceptions of discomfort increase as the ambient lighting conditions are reduced, and as the glare sources are located closer to the line of sight. Recent research also appears to demonstrate the role of short-wavelength light in contributing to the discomfort glare response. The present paper outlines a laboratory study to probe the effects of ambient light level, spectral power distribution, and control of gaze on discomfort glare, and potential interactions among these factors.
Technical Paper

Driving in Snow: Effect of Headlamp Color at Mesopic and Photopic Light Levels

2001-03-05
2001-01-0320
Many individuals believe that yellow headlights are preferable to white headlights when driving at night during a snowfall. Although evidence exists to support the claim that yellow light can be perceived as less “glaring” or “distracting” than white light of equal luminance, it is not clear whether backscattered light of different colors are differentially effective for driver comfort or for driver performance. This study investigates a potential mechanism that could support the supposed benefit of yellow headlamps for reducing the detrimental effects of backscattered light to drivers at night. The results suggest that under low light levels when the visual field is dominated by a dynamic field of visual “noise” (like that caused by backscattered light from falling snow), performance of a tracking task similar to driving is reduced in accordance with the scotopic (rod-stimulating) content of the visual noise.
Technical Paper

Flashing Emergency Lights: Influence of Intensity, Flash Rate and Synchronization on Driver Visibility, Comfort and Confidence

2022-03-29
2022-01-0801
Flashing emergency and warning lights are critical elements of public safety and traffic control during roadway incidents. These lights should not only alert drivers to their presence, but also should inform them of who and what is present on the scene, and should help to manage the responses of drivers as they navigate past the incident. First responder and driver safety depend upon all three of these functions, yet standards focus almost entirely on alerting drivers. A full-scale outdoor field study was carried out during daytime, during nighttime on dry pavement and during nighttime on wet pavement, using a mock-up roadside scene containing three police vehicles. The lights on the vehicles were adjusted to produce different levels of intensity, flash rate, and synchronization of lights across all three vehicles. In some cases, sequentially flashing lights were present.
Technical Paper

Intelligent Warning Lights and Driving Safety

2015-04-14
2015-01-1700
Warning lights and beacons on service vehicles such as maintenance trucks, tow trucks, utility service vehicles and delivery vehicles are an important line of defense for the workers who operate them. These flashing lights can also contribute to visual chaos making it difficult to navigate through a work zone location. Research on the flashing configuration and spatial and temporal coordination of warning lights that could adapt to ambient conditions and situations is described, leading to recommendations for preliminary performance specifications
Technical Paper

A Novel Barricade Warning Light System Using Wireless Communications

2018-09-12
2018-01-5036
Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface.
X