Refine Your Search

Topic

Author

Search Results

Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Journal Article

Enhancing Light Load HCCI Combustion in a Direct Injection Gasoline Engine by Fuel Reforming During Recompression

2009-04-20
2009-01-0923
Homogeneous charge compression ignition (HCCI) engines have the potential for high fuel efficiency and low NOx emissions. The major disadvantage of HCCI remains the narrow operating range. One way to extend the operating range of HCCI combustion to lower load is to inject part of the total fuel mass into the hot gas during recompression. With even lower engine load, part of the fuel can also be injected late in the main compression and ignited by a spark. The propagating flame further compresses the remaining fuel-air mixture until auto-ignition occurs (spark-assisted HCCI). In this study we investigated the effect of fuel reforming and spark assist in a gasoline engine with direct fuel injection and negative valve overlap. We performed experiments with different injection quantities and varying injection timings during recompression.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Technical Paper

The Effects of Spray, Mixing, and Combustion Model Parameters on KIVA-II Predictions

1991-09-01
911785
The combustion process in a diesel engine was simulated using KIVA-II, a multi-dimensional computer code. The original combustion model in KIVA-II is based on chemical kinetics, and thus fails to capture the effects of turbulence on combustion. A mixing-controlled, eddy break-up combustion model was implemented into the code. Realistic diesel fuel data were also compiled. Subsequently, the sensitivity of the code to a number of parameters related to fuel injection, mixing, and combustion was studied. Spray injection parameters were found to have a strong influence on the model's predictions. Higher injection velocity and shorter injection duration result in a higher combustion rate and peak pressure and temperature. The droplet size specified at injection significantly affects the rate of spray penetration and evaporation, and thus the combustion rate. Contrary to expectation, the level of turbulence at the beginning of the calculation did not affect fuel burning rate.
Technical Paper

Implementation of a Fuel Spray Wall Interaction Model in KIVA-II

1991-09-01
911787
The original spray model in the KIVA-II code includes sub-models for drop injection, breakup, coalescence, and evaporation. Despite the sophisticated structure of the model, predicted spray behavior is not in satisfactory agreement with experimental results. Some of the discrepancies are attributed to the lack of a fuel jet wall impingement sub-model, a wall fuel layer evaporation sub-model, and uncertainties related to the choice of submodels parameters. A spray impingement model based on earlier research has been modified and implemented in KIVA-II. Heat transfer between the fuel layer on the piston surface and the neighboring gaseous charge has also been modelled based on the Colburn Analogy. A series of two dimensional simulations have been performed for a Caterpillar 1Y540 diesel engine to investigate droplet penetration, impingement, fuel evaporation, and chemical reaction, and the dependence of predictions on certain model parameters.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies

1990-02-01
900619
A personal computer-based vehicle powertrain simulation (VPS) is developed to predict fuel economy and performance. This paper summarizes the governing equations used in the model. Then the different simulation techniques are described with emphasis on the more complicated time-dependent simulation. The simulation is validated against constant speed and variable cycle test track data obtained for a 5 ton army truck. Then the simulation is used to compare the performance of the 5 ton truck when powered by a cooled and natually aspirated engine, a cooled and turbocharged engine, and an uncooled and turbocharged engine. Studies of the effect of payload, tire efficiency, and drag coefficient on vehicle performance are also conducted, as well as a performance comparison between manual and automatic transmissions. It is concluded that the VPS code can provide good predictions of vehicle fuel economy, and thus is a useful tool in designing and evaluating vehicle powertrains.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

The Reverse Engineering of a Turbocharged Diesel Engine through a Unified Systems Approach

2001-03-05
2001-01-1244
The need for a rigorous systems engineering approach to automotive powertrains has been addressed in this work from the perspective of the diesel engine. A high-fidelity engine simulation has been integrated with a total vehicle model for the purpose of reverse engineering the optimal powerplant for a given vehicle mission. Engine parameters have been coordinated between the simulations to develop a framework for total vehicle design. The design strategies discussed in this paper allow engine researchers to set targets for individual system components and to analyze the tradeoffs associated with different vehicle mission objectives. A detailed case study employing these techniques is presented for a conventional vehicle where the most fuel-efficient engine is found that simultaneously conforms to the desired performance criteria.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Design of an Advanced Heavy Tactical Truck: A Target Cascading Case Study

2001-11-12
2001-01-2793
The target cascading methodology is applied to the conceptual design of an advanced heavy tactical truck. Two levels are defined: an integrated truck model is represented at the top (vehicle) level and four independent suspension arms are represented at the lower (system) level. Necessary analysis models are developed, and design problems are formulated and solved iteratively at both levels. Hence, vehicle design variables and system specifications are determined in a consistent manner. Two different target sets and two different propulsion systems are considered. Trade-offs between conflicting targets are identified. It is demonstrated that target cascading can be useful in avoiding costly design iterations late in the product development process.
Technical Paper

Diesel Exhaust Simulator: Design and Application to Plasma Discharge Testing

2003-03-03
2003-01-1184
A diesel fuel and air diffusion flame burner system has been designed for laboratory simulation of diesel exhaust gas. The system consists of mass flow controllers and a fuel pump, and employs several unique design and construction features. It produces particulate emissions with size, number distribution, and morphology similar to diesel exhaust. At the same time, it generates NOx emissions and HC similar to diesel. The system has been applied to test plasma discharges. Different design discharge devices have been tested, with results indicating the importance of testing devices with soot and moisture. Both packed bed reactor and flat plate dielectric barrier discharge systems remove some soot from the gas, but the designs tested are susceptible to soot fouling and related electrical failures. The burner is simple and stable, and is suitable for development and aging of plasma and catalysts systems in the laboratory environment.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Fuel Economy and Power Benefits of Cetane-Improved Fuels in Heavy-Duty Diesel Engines

1997-10-01
972900
A program to explore the effects of natural and additive-derived cetane on various aspects of diesel performance and combustion has been carried out. Procedures have been developed to measure diesel engine fuel consumption and power to a high degree of precision. These methods have been used to measure fuel consumption and power in three heavy-duty direct-injection diesel engines. The fuel matrix consisted of three commercial fuels of cetane number (CN) of 40-42, the same fuels raised to CN 48-50 with a cetane improver additive, and three commercial fuels of base CN 47-50. The engines came from three different U.S. manufacturers and were of three different model years and emissions configurations. Both fuel economy and power were found to be significantly higher for the cetane-improved fuels than for the naturally high cetane fuels. These performance advantages derive mainly from the higher volumetric heat content inherent to the cetane-improved fuels.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

2003-03-03
2003-01-0007
A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
X