Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Technical Paper

Modeling and Validation of Automotive “Smart” Thermal Management System Architectures

2004-03-08
2004-01-0048
The functionality and performance of an internal combustion (spark or compression ignition) engine's thermal management system can be significantly enhanced through the application of mechatronics technology. The replacement of the conventional thermostat valve and mechanical coolant pump in the heating/cooling system by a servo-motor driven smart valve and variable flow pump permits powertrain control module regulated coolant flow through the engine block and radiator. In this paper, a dynamic mathematical model will be created for a 4.6L spark ignition engine to analyze various thermal management system architectures. The designs to be studied include the factory configuration, a smart valve upgrade, and the smart valve combined with a variable flow pump and radiator fan. Representative results are presented and discussed to demonstrate improvements in the engine warm-up time, temperature tracking, and component power consumption.
Technical Paper

Coolant Flow Control Strategies for Automotive Thermal Management Systems

2002-03-04
2002-01-0713
The automotive thermal management system is responsible for maintaining engine and passenger compartment temperatures, which promote normal combustion events and passenger comfort. This system traditionally circulates a water ethylene glycol mixture through the engine block using a belt-driven water pump, wax pellet thermostat valve, radiator with electric fan, and heater core. Although vehicle cooling system performance has been reliable and acceptable for many decades, advances in mechatronics have permitted upgrades to powertrain and chassis components. In a similar spirit, the introduction of a variable speed electric water pump and servo-motor thermostat valve allows ECU-based thermal control. This paper examines the integration of an electric water pump and intelligent thermostat valve to satisfy the engine's basic cooling requirements, minimize combustion chamber fluctuations due to engine speed changes, and permit quick heating of a cold block.
Technical Paper

Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger - Modeling and Size Scaling

2017-03-28
2017-01-0259
Heat rejection in ground vehicle propulsion systems remains a challenge given variations in powertrain configurations, driving cycles, and ambient conditions as well as space constraints and available power budgets. An optimization strategy is proposed for engine radiator geometry size scaling to minimize the cooling system power consumption while satisfying both the heat removal rate requirement and the radiator dimension size limitation. A finite difference method (FDM) based on a heat exchanger model is introduced and utilized in the optimization design. The optimization technique searches for the best radiator core dimension solution over the design space, subject to different constraints. To validate the proposed heat exchanger model and optimization algorithm, a heavy duty military truck engine cooling system is investigated.
Technical Paper

Automotive Simulator Based Novice Driver Training with Assessment

2011-04-12
2011-01-1011
Motor vehicle crashes involving novice drivers are significantly higher than matured driver incidents as reported by the National Highway Traffic Safety Administration Fatality Analysis Reporting System (NHTSA-FARS). Researchers around the world and the United States are focused on how to decrease crashes for this driver demographic. Novice drivers usually complete driver education classes as a pre-requisite for full licensure to improve overall knowledge and safety. However, compiled statistics still indicate a need for more in-depth training after full licensure. An opportunity exists to supplement in-vehicle driving with focused learning modules using automotive simulators. In this paper, a training program for “Following Etiquette” and “Situational Awareness” was developed to introduce these key driving techniques and to complete a feasibility study using a driving simulator as the training tool.
Technical Paper

Evaluation of an Automotive Simulator Based Driver Safety Training Program for Run-Off-the-Road and Recovery

2013-04-08
2013-01-1260
Despite the growing acceptance of driver education programs, there remains a class of unpredictable and dangerous vehicle situations for which very little training or education is offered. Included in this list is a condition called run-off-the-road (ROR) which occurs when the wheels of the vehicle leave the paved surface of the road and begin to travel on the lower friction surfaces of the shoulder or side of the road. Unsuccessful recovery from ROR contributes to an overwhelming percentage of motorized vehicle crash fatalities and injuries. Most present solutions involve roadway infrastructure management and driver assistance systems. While these solutions have contributed varying amounts of success to the ROR problem, they remain limited as they do not directly address the critical cause of ROR crashes which is driver performance errors.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

Development and Evaluation of a Portable Driving Performance and Analysis System for Education Purposes

2015-04-14
2015-01-0259
According to the National Highway Traffic Safety Administration (NHTSA), motor collisions account for nearly 2.4 million injuries and 37 thousand fatalities each year in the United States. A great deal of research has been done in the area of vehicular safety, but very little has been completed to ensure licensed drivers are properly trained. Given the inherent risks in driving itself, the test for licensure should be uniform and consistent. To address this issue, an inexpensive, portable data acquisition and analysis system has been developed for the evaluation of driver performance. A study was performed to evaluate the system, and each participant was given a normalized driver rating. The average driver rating was μ=55.6, with a standard deviation of σ=12.3. All but 3 drivers fell into the so-called “Target Zone”, defined by a Driver Rating of μ± 1σ.
Technical Paper

Driver Models for Virtual Testing of Automotive Run-Off-Road and Recovery Control Systems and Education Strategies

2015-04-14
2015-01-0256
Driver modeling is essential to both vehicle design and control unit development. It can improve the understanding of human driving behavior and decrease the cost and risk of vehicle system verification and validation. In this paper, three driver models were implemented to simulate the behavior of drivers subject to a run-off-road recovery event. Target path planning, pursuit behavior, compensate behavior, physical limitations, and neuromuscular modeling were taken into consideration in the feedforward/feedback driver model. A transfer function driver model and a cost function based driver model from a popular vehicle simulation software were also simulated and a comparison of these three models was made. The feedforward/feedback driver model exhibited the best balance of performance with smallest overshoot (0.226m), medium settling time (1.20s) and recovery time (4.30s).
Technical Paper

A Dynamic Driving Course for Military Personnel -Curriculum and Assessment Results

2015-04-14
2015-01-0130
Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
Journal Article

Automotive Waste Heat Recovery after Engine Shutoff in Parking Lots

2019-04-02
2019-01-0157
1 The efficiency of internal combustion engines remains a research challenge given the mechanical friction and thermodynamic losses. Although incremental engine design changes continue to emerge, the harvesting of waste heat represents an immediate opportunity to address improved energy utilization. An external mobile thermal recovery system for gasoline and diesel engines is proposed for use in parking lots based on phase change material cartridges. Heat is extracted via a retrofitted conduction plate beneath the engine block after engine shutoff. An autonomous robot attaches the cartridge to the plate and transfers the heat from the block to the Phase Change Material (PCM) and returns later to retrieve the packet. These reusable cartridges are then driven to a Heat Extraction and Recycling Tower (HEART) facility where a heat exchanger harvests the thermal energy stored in the cartridges.
Technical Paper

Predictive Maintenance of a Ground Vehicle Using Digital Twin Technology

2024-04-09
2024-01-2867
The safety and reliability of ground vehicles is a motivating factor for periodic maintenance which includes fluids, lubrication, cleaning, repairs, and general observation of key subsystems. The scheduling of maintenance activities can occur at different rates such as daily, weekly, or perhaps operating time based on collected historical data and general guidelines. The availability of a digital twin (DT), which offers a virtual representation of the vehicle behavior, enables virtual system simulations for different operating cycles to explore the dynamic behavior. When field operating fleet data can be integrated with the digital twin estimates, then this supplemental information can be combined with the existing maintenance plan to provide a more comprehensive approach. In this paper, a digital twin with a statistical based predictive maintenance strategy is investigated for a wheeled military ground vehicle.
X