Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup - System Testing

2002-07-15
2002-01-2401
NASA Ames Research Center and Lawrence Berkeley National lab have completed a three-year joint NRA research project on the use of waste biomass to make a gaseous contaminant removal system. The objective of the research was to produce activated carbon from life support wastes and to use the activated carbon to adsorb and remove incineration flue gas contaminants such as NOx. Inedible biomass waste from food production was the primary waste considered for conversion to activated carbon. Previous research at NASA Ames has demonstrated the adsorption of both NOx and SO2 on activated carbon made from biomass and the subsequent conversion of adsorbed NOx to nitrogen and SO2 to sulfur. This paper presents the results testing the whole process system consisting of making, using, and regenerating activated carbon with relevant feed from an actual incinerator. Factors regarding carbon preparation, adsorption and regeneration are addressed.
Technical Paper

Optimization of Waste Derived Elemental Use to Meet Demands of Crop Production of Selected BIO-Plex Crops

2000-07-10
2000-01-2285
In this paper we have developed a unique approach to providing the elements required for crop production in a steady-state condition, which is essential for Space habitats. The approach takes into consideration human elemental requirements and crop requirements for healthy growth and develops a method for the calculation of the rates of nutrient uptake for the different elements for different crops. The uptake rates can be used to calculate the rate of nutrient supply required in the hydroponic solution. This approach ensures that crops produced will not have excessive levels of elements that may be harmful to humans. It also provides an opportunity to optimize the processes of crop production and waste processing through highly controlled feed rates.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

On Demand Electrochemical Production of Reagents to Minimize Resupply of Expendables

1999-07-12
1999-01-2181
The electrosynthesis of expendable reagents including acids, bases, and oxidants from simple salts or salt mixtures has been demonstrated using a variety of electrochemical cells. A five chambered electrodialytic water splitting (EDWS) cell with bipolar membranes was utilized to efficiently convert sodium sulfate, sodium chloride, potassium nitrate, and potassium chloride to conjugate acids and bases. With the same cell, selective segregation of cations and anions from mixed salt solutions occurred, resulting in relatively pure acids and bases. These results suggest that pure acids and bases can be produced from composite spacecraft brines. Chemical oxidants such as sodium and ammonium persulfate were also synthesized with high current efficiencies by the electrooxidation of salts and acids in a two chambered electrochemical cell.
Journal Article

Waste Management Technology and the Drivers for Space Missions

2008-06-29
2008-01-2047
Since the mid 1980s, NASA has developed advanced waste management technologies that collect and process waste. These technologies include incineration, hydrothermal oxidation, pyrolysis, electrochemical oxidation, activated carbon production, brine dewatering, slurry bioreactor oxidation, composting, NOx control, compaction, and waste collection. Some of these technologies recover resources such as water, oxygen, nitrogen, carbon dioxide, carbon, fuels, and nutrients. Other technologies such as the Waste Collection System (WCS - the commode) collect waste for storage or processing. The need for waste processing varies greatly depending upon the mission scenario. This paper reviews the waste management technology development activities conducted by NASA since the mid 1980s and explores the drivers that determine the application of these technologies to future missions.
X