Refine Your Search

Topic

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Combustion Recession after End of Injection in Diesel Sprays

2015-04-14
2015-01-0797
This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
Journal Article

Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging

2015-09-06
2015-24-2417
A radiation-based 2-color method (2C) and light extinction imaging (LEI) have been performed simultaneously to obtain two-dimensional soot distribution information within a diesel spray flame. All the measurements were conducted in an optically accessible two-stroke engine equipped with a single-hole injector. The fuel used here is a blend of 30% Decane and 70% Hexadecane (in mass). According to previous research, operating conditions with three different flame soot amounts were investigated. The main purpose of this work is to evaluate the two soot diagnostics techniques, after proper conversion of soot-related values from both methods. All the KL extinction values are lower than the saturation limit. As expected, both techniques show sensitivity with the parametric variation. The soot amount increases with higher ambient gas temperature and lower injection pressure. However, the LEI technique presents more sensitivity to the soot quantity.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Lift-Off Length and KL Extinction Measurements of Biodiesel and Fischer-Tropsch Fuels under Quasi-Steady Diesel Engine Conditions

2011-09-11
2011-24-0037
The relationship between ignition, lift-off length and soot formation was investigated for a collection of fuels in an optically-accessible modified 2-stroke engine under a set of typical quasi-steady state Diesel DI conditions. Five fuels including biodiesel blends and Fischer-Tropsch fuels have been selected for their potential to substitute conventional diesel with no major modifications on the engine hardware, and were previously characterized under ambient pressure following ASTM standards. Fuels were injected into a large volume through a single-hole nozzle at three levels of injection pressure, by sweeping ambient temperatures at constant density, and ambient densities at constant temperature. The 8 ms single-shot injections were long enough to reach the stabilization of a free diffusion flame. The OH-chemiluminescence was imaged and lift-off length was measured via image post-processing.
Technical Paper

Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021-09-05
2021-24-0038
The reduction of carbon footprint of compression ignition engines for road transport makes it necessary to search for clean fuels alternative to diesel and to evaluate them under engine conditions. For this reason, in this paper, the combustion behaviour of different blends of synthetic fuels has been analyzed in an optical single cylinder engine of Medium Duty size (0,8 liters per cylinder) by means of optical techniques. The aim is to evaluate the effect of synthetic fuels, both partly or completely fossil diesel, in terms of combustion behaviours and soot formation. Therefore, different blends of oxymethylene dimethyl ether (OMEX) with diesel and neat hydrotreated vegetable oil (HVO) were studied. A conventional common rail injection system and a single injection strategy was used. In addition, special care was taken to ensure that conditions inside the engine cylinder at the injection start were as close as possible to the conditions used in previous studies.
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

LDA Measurements of Steady and Unsteady Flow Through the Induction System of a Heavy Duty Diesel Engine

1990-09-01
901576
LDA technique was used to investigate valve exit flow and in-cylinder flow generated by a directed intake port of a heavy duty Diesel engine under steady and unsteady conditions. The results obtained under both steady and unsteady show the flow patterns is very sensitive to the valve lift with this type of intake port. At small valve lift, flow profile around the valve periphery is relatively uniform, the corresponding in-cylinder flow is characteristic of double vortex. With valve lift increasing, the separating region appears near the valve seat in part of the valve periphery, therefore the flow pattern begins to depend on the position around the valve periphery. As a result, the valve exit flow is almost along the elongation of intake port at the maximum lift, the corresponding in-cylinder flow behaves as a solid body of rotation. The motion of valve seems to have little effects on the valve exit flow pattern.
Technical Paper

Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions

2017-03-28
2017-01-0843
Recent studies have shown that the use of highly premixed dual fuel combustion reduces pollutant emissions and fuel consumption in CI engines. The most common strategy for dual fueling is to use two injection systems. Port fuel injection for low reactivity fuel and direct injection for high reactivity fuel. This strategy implies some severe shortcomings for its real implementation in passenger cars such as the use of two fuel tanks. In this sense, the use of a single injection system for dual fueling could solve this drawback trying to maintain pollutant and efficiency benefits. Nonetheless, when single injection system is used, the spray characteristics become an essential issue. In this work the fundamental characteristics of dual-fuel sprays with a single injection system under non-evaporating engine-like conditions are presented.
Technical Paper

A 5-Zone Model to Improve the Diagnosis Capabilities of a Rapid Compression-Expansion Machine (RCEM) in Autoignition Studies

2017-03-28
2017-01-0730
In this work, a 5-zone model has been applied to replicate the in-cylinder conditions evolution of a Rapid Compression-Expansion Machine (RCEM) in order to improve the chemical kinetic analyses by obtaining more accurate simulation results. To do so, CFD simulations under motoring conditions have been performed in order to identify the proper number of zones and their relative volume, walls surface and temperature. Furthermore, experiments have been carried out in an RCEM with different Primary Reference Fuels (PRF) blends under homogeneous conditions to obtain a database of ignition delays and in-cylinder pressure and temperature evolution profiles. Such experiments have been replicated in CHEMKIN by imposing the heat losses and volume profiles of the experimental facility using a 0-D 1-zone model. Then, the 5-zone model has been analogously solved and both results have been compared to the experimental ones.
Technical Paper

Evaluation of Vortex Center Location Algorithms for Particle Image Velocimetry Data in an Optical Light-Duty Compression Ignition Engine

2018-04-03
2018-01-0209
Ever decreasing permitted emission levels and the necessity of more efficient engines demand a better understanding of in-cylinder phenomena. In swirl-supported compression ignition (CI) engines, mean in-cylinder flow structures formed during the intake stroke deeply influence mixture preparation prior to combustion, heat transfer and pollutant oxidation all of which could potentially improve engine performance. Therefore, the ability to characterize these mean flow structures is relevant for achieving performance improvements. CI mean flow structure is mainly described by a precessing vortex. The location of the vortex center is key for the characterization of the flow structure. Consequently, this work aims at evaluating algorithms that allow for the location of the vortex center both, in ensemble-averaged velocity fields and in instantaneous velocity fields.
Technical Paper

Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions

2012-04-16
2012-01-0456
In the wake of the Turbulent Nonpremixed Flames group (TNF) for atmospheric pressure flames, an open group of laboratories belonging to the Engine Combustion Network (ECN) agreed on a list of boundary conditions -called “Spray A”- to study the free diesel spray under steady-state conditions. Such conditions are relevant of a diesel engine operating at low temperature combustion conditions with moderate EGR, small nozzle and high injection pressure. The objective of this program is to accelerate the understanding of diesel flames, by applying each laboratory's knowledge and skills to a specific set of boundary conditions, in order to give an extensive and reliable experimental database to help spray modeling. In the present work, “Spray A” operating condition has been achieved in a constant pressure, continuous flow vessel. Schlieren high-speed imaging has been conducted to measure the spray penetration under evaporative conditions.
Technical Paper

A Soot Radiation Model for Diesel Sprays

2012-04-16
2012-01-1069
Soot radiation has an important contribution to the overall heat losses in a combustion chamber of a DI diesel engine. The aim of this study was to develop a soot radiation model coupled to a soot formation/oxidation sub-model, which is also described in the paper. On the one hand, the soot radiation model is based on the available knowledge of the radiation of a soot cloud commonly used to apply the two-color method to diesel sprays. On the other hand, it was tuned and validated with experimental data: the optical thickness, KL, obtained from the laser extinction method, and the radiation intensity at two different wavelengths. Once the model was validated, the overall radiated power was calculated taking into account the radiation absorption caused by the spray itself. This power was compared to the one released by the spray combustion process, and the results were in agreement with other studies available in the literature.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

A Study on a New Combustion System for D.I. Diesel—CSCS System

1988-02-01
880429
This paper introduces a new combustion system for B.I. diesel engine — CSCS system, with which a new structural pintle injector and a combustion bowl with squish lip are used and no intake swirl is needed. The injection and spray characteristics of the new injector include the uniform peripheral distribution of spray and the good atomization quality of spray as well as the higher fuel injection rate. The schlieren photograph and the DDM spray model are applied to study fuel—air mixing and combustion processes of the new combustion system, the main results are that the rates of fuel—air mixing and combustion are higher owing to homogeneous distribution and rapid evaporation of fuel. The results of test on a single-cylinder engine show the availability of the combustion system on small bore high-speed D.I. diesel and the improvements regarding fuel consumption and cold smoke.
Technical Paper

Quasi-1D Analysis of n-Dodecane Split Injection Process

2022-03-29
2022-01-0506
Split injection processes have been analyzed by means of a Quasi-1D spray model that has been recently coupled to a laminar tabulated unsteady-flamelet progress-variable (UFPV) combustion model. The modelling approach can predict ignition delay and lift-off for long injection profiles, and it is now extended to a two-pulse injection scheme. In spite of the simplicity of the approach, relevant phenomena are adequately reproduced. In particular, the faster penetration of the second injection pulse compared to the first one is captured by the model both under inert and reacting conditions. The second pulse ignites much faster than the first one due to the injection into the remnants of the first one, where high temperature oxygen-depleted regions can be found. Ignition of the second pulse happens as soon as the first pulse reaches this region, with a faster low- to high-temperature transition.
Technical Paper

Combustion Development of the New International® 6.0L V8 Diesel Engine

2004-03-08
2004-01-1404
International has developed a new generation 6.0L V8 DI diesel engine for the Ford F-Series full size pick-up trucks. This new engine features a number of state-of-the-art technologies designed to meet the US 2004 heavy-duty engine emission legislation and other requirements from the customers. A set of combustion development strategies was created. They were, the use of cooled Exhaust Gas Recirculation (EGR) to inhibit NOx formation, a centrally located nozzle and an optimized combustion bowl to improve fuel distribution and reduce soot formation, the use of increased injection pressure to enhance air/fuel mixing and increase soot oxidation rate, and a Variable Geometry Turbocharger (VGT) to provide sufficient air/fuel ratio over a broad speed range. The combustion development took full advantage of the “virtual lab” tools.
Technical Paper

An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray C/D Nozzles in a Constant Pressure Vessel

2018-09-10
2018-01-1783
The Engine Combustion Network (ECN) is a coordinate effort from research partners from all over the world which aims at creating a large experimental database to validate CFD calculations. Two injectors from ECN, namely Spray C and D, have been compared in a constant pressure flow vessel, which enables a field of view of more than 100 mm. Both nozzles have been designed with similar flow metrics, with Spray D having a convergent hole shape and Spray C a cylindrical one, the latter being therefore more prone to cavitation. Although the focus of the study is on reacting conditions, some inert cases have also been measured. High speed schlieren imaging, OH* chemiluminescence visualization and head-on broadband luminosity have been used as combustion diagnostics to evaluate ignition delay, lift off length and reacting tip penetration. Parametric variations include ambient temperature, oxygen content and injection pressure variations.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
X