Refine Your Search

Topic

Author

Search Results

Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Conceptualization and Implementation of an AWD Parallel Hybrid Powertrain Concept

2013-04-08
2013-01-1448
The Deep Orange [1] initiative is an integral part of the automotive graduate program at Clemson University International Center for Automotive Research. The initiative was developed to provide the graduate students with hands-on experience of the knowledge attained in the various engineering disciplines and related disciplines (such as marketing and human factors psychology). For the 3rd edition of Deep Orange, the goal was to develop a blank sheet hybrid mainstream sports car concept targeted towards the Generation Y (Gen Y) market segment. The objective of this paper is to elaborate on the overall development process and the technology that was created and integrated. A unique all-wheel-drive (AWD) parallel hybrid concept was derived based on extensive analyses of the Gen Y market. The data revealed that Gen Y, as an environmentally conscious generation, is willing to invest in sustainable powertrain technologies and also has a significant interest in all-wheel-drive.
Technical Paper

An Advanced Automatic Transmission with Interlocking Dog Clutches: High-Fidelity Modeling, Simulation and Validation

2017-03-28
2017-01-1141
Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies

2019-09-09
2019-24-0027
This paper seeks to identify key input parameters needed to achieve a production-viable control strategy for spark-assisted compression ignition (SACI) engines. SACI is a combustion strategy that uses a spark plug to initiate a deflagration flame that generates sufficient ignition energy to trigger autoignition in the remaining charge. The flame propagation phase limits the rate of cylinder pressure rise, while autoignition rapidly completes combustion. High dilution within the autoignited charge is generally required to maintain reaction rates feasible for production. However, this high dilution may not be reliably ignited by the spark plug. These competing constraints demand novel mixture preparation strategies for SACI to be feasible in production. SACI with charge stratification has demonstrated sufficiently stable flame propagation to reliably trigger autoignition across much of the engine operating map.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Evaluation of CarFit® Criteria Compliance and Knowledge of Seat Adjustment

2018-04-03
2018-01-1314
Improper fit in a vehicle will affect a driver’s ability to reach the steering wheel and pedals, view the roadway and instrument gauges, and allow vehicle safety features to protect the driver during a crash. CarFit® is a community outreach program to educate older drivers on proper “fit” within their personal vehicle. A subset of measurements from CarFit® were used to quantify the “fit” of 97 older drivers over 60 and 20 younger drivers, ages 30-39, in their personal vehicles. Binary, logistic regression was used to assess the likelihood of drivers meeting the CarFit® measurement criteria prior to and after CarFit® education. The results showed older drivers were five times more likely than younger drivers to meet the CarFit® criteria for line of sight above the steering wheel, suggesting that younger drivers would also benefit from CarFit® education.
Technical Paper

Use of Machine Learning for Real-Time Non-Linear Model Predictive Engine Control

2019-04-02
2019-01-1289
Non-linear model predictive engine control (nMPC) systems have the ability to reduce calibration effort while improving transient engine response. The main drawback of nMPC for engine control is the computational power required to realize real-time operation. Most of this computational power is spent linearizing the non-linear plant model at each time step. Additionally, the effectiveness of the nMPC system relies heavily on the accuracy of the model(s) used to predict the future system behavior, which can be difficult to model physically. This paper introduces a hybrid modeling approach for internal combustion engines that combines physics-based and machine learning techniques to generate accurate models that can be linearized with low computational power. This approach preserves the generalization and robustness of physics-based models, while maintaining high accuracy of data-driven models. Advantages of applying the proposed model with nMPC are discussed.
Journal Article

Conceptual Development of a Multi-Material Composite Structure for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1334
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development of a multimaterial lightweight Body-in-White (BiW) structure to support an all-electric powertrain combined with an interior package that maximizes volume to enable a variety of interior configurations and activities for Generation Z users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics.
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Technical Paper

Conceptualization and Implementation of a Dual-Purpose Battery Electric Powertrain Concept for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-1182
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the sixth generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to describe the development and implementation of a dual-purpose powertrain system enabling vehicle propulsion as well as stationary activities of the Deep Orange 6 vehicle concept. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish vehicle target and subsystem requirement, which formed the foundation of the Unique Selling Points (USPs) of the concept.
Technical Paper

An Improved Seating Accommodation Model for Older and Younger Drivers

2016-04-05
2016-01-1444
The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
Journal Article

Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and Its Use for Analysis of Transient Operations

2014-10-13
2014-01-2546
Abundant supply of Natural Gas (NG) is U.S. and cost-advantage compared to diesel provides impetus for engineers to use alternative gaseous fuels in existing engines. Dual-fuel natural gas engines preserve diesel thermal efficiencies and reduce fuel cost without imposing consumer range anxiety. Increased complexity poses several challenges, including the transient response of an engine with direct injection of diesel fuel and injection of Compressed Natural Gas (CNG) upstream of the intake manifold. A 1-D simulation of a Cummins ISX heavy duty, dual-fuel, natural gas-diesel engine is developed in the GT-Power environment to study and improve transient response. The simulated Variable Geometry Turbine (VGT)behavior, intake and exhaust geometry, valve timings and injector models are validated through experimental results. A triple Wiebe combustion model is applied to characterize experimental combustion results for both diesel and dual-fuel operation.
Journal Article

Conceptualization and Implementation of a 6-Seater Interior Concept for a Hybrid Mainstream Sports Car

2013-04-08
2013-01-0449
The Deep Orange [1] initiative is an integral part of the automotive graduate program at Clemson University International Center for Automotive Research. The initiative was developed to provide the graduate students with hands-on experience of the knowledge attained in the various engineering disciplines and related disciplines (such as marketing and human factors psychology). For the 3rd edition of Deep Orange, the goal was to develop a blank sheet hybrid mainstream sports car concept targeted towards the Generation Y (Gen Y) market segment. The objective of this paper is to explain the unique interior-seating concept that was derived from extensive analyses of the Generation Y market segment based on surveys completed by owners of new cars and light trucks in the United States. The survey data clearly indicated that a significant portion of Gen Y would prefer a vehicle with 5 or more seating positions.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

Conceptual Development and Implementation of a Reconfigurable Interior Concept for an Urban Utility/Activity Vehicle

2016-04-05
2016-01-0321
The Deep Orange framework is an integral part of the graduate automotive engineering education at Clemson University International Center for Automotive Research (CU-ICAR). The initiative was developed to immerse students into the world of an OEM. For the 6th generation of Deep Orange, the goal was to develop an urban utility/activity vehicle for the year 2020. The objective of this paper is to explain the interior concept that offers a flexible interior utility/activity space for Generation Z (Gen Z) users. AutoPacific data were first examined to define personas on the basis of their demographics and psychographics. The resulting market research, benchmarking, and brand essence studies were then converted to consumer needs and wants, to establish technical specifications, which formed the foundation of the Unique Selling Points (USPs) of the concept.
Journal Article

Application of a Novel Metal Folding Technology for Automotive BiW Design

2013-04-08
2013-01-0373
The Deep Orange [1] initiative is an integral part of the automotive graduate program at Clemson University International Center for Automotive Research. The initiative was developed to provide the graduate students with hands-on experience of the knowledge attained in the various engineering disciplines and related disciplines (such as marketing and human factors psychology). For the 3rd edition of Deep Orange, the goal was to develop a blank sheet hybrid mainstream sports car concept targeted towards the Generation Y (Gen Y) market segment. The objective of this paper is to explain the unique body-in-white (BiW) concept that offers space for 6-passengers and includes a dual-mode hybrid all-wheel drive powertrain. An additional objective of the project was to develop and showcase a body-in-white concept that will eliminate metal stamping and high capital investments associated with this technology (such as dies and stamping tools).
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
X