Refine Your Search

Search Results

Technical Paper

Failure Mode of Laser Welds in Lap-Shear Specimens of HSLA Steel

2010-04-12
2010-01-0973
Failure mode of laser welds in lap-shear specimens of high strength low alloy (HSLA) steel is investigated in this paper. The experimental results from quasi-static tests show that the laser welds failed in a ductile necking/shear failure mode near the heat affected zone. In order to understand the failure mode of these welds, a finite element analysis under plane strain conditions was conducted to identify the effects of the different plastic behaviors of the base metal, heat affected zone, and weld metal on the ductile failure. The results of the finite element analysis show that the higher effective stress-plastic strain curves of the weld metal and the heat affected zone results in the necking/shear failure mode. The deformed shape of the finite element model near the weld matches well with that of a failed weld.
Technical Paper

Fatigue Behaviors of Aluminum 5754-O Spot Friction Welds in Lap-Shear Specimens

2008-04-14
2008-01-1139
Fatigue behaviors of aluminum 5754-O spot friction welds made by a concave tool in lap-shear specimens are investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the welds before and after failure under quasi-static and cyclic loading conditions are examined. The micrographs indicate that the failure modes of the 5754 spot friction welds under quasi-static and cyclic loading conditions are quite different. The dominant kinked fatigue cracks for the final failures of the welds under cyclic loading conditions are identified. Based on the experimental observations of the paths of the dominant kinked fatigue cracks, a fatigue life estimation model based on the stress intensity factor solutions for finite kinked cracks is adopted to estimate the fatigue lives of the welds.
Technical Paper

Effects of Processing Time on Strengths and Failure Modes of Dissimilar 5754/7075 and 7075/5754 Spot Friction Welds in Lap-Shear Specimens

2008-04-14
2008-01-1138
In this investigation, dissimilar 5754/7075 and 7075/5754 spot friction welds were first made under different processing conditions. The spot friction welds in lap-shear specimens were tested under quasi-static loading conditions. The optimal processing times to maximize the failure loads of the 5754/7075 and 7075/5754 welds under lap-shear loading conditions are identified. The maximum failure load of the 7075/5754 welds is about 40% larger than that of the 5754/7075 welds. Optical micrographs of both types of spot friction welds made at different processing times before and after failure are examined. The micrographs show different weld geometries and different failure modes of spot friction welds made at different processing times. The failure modes of the 5754/7075 and 7075/5754 spot friction welds appear to be quite complex and strongly depend on the geometry and the strength of the interfacial surface between the two deformed sheet materials.
Technical Paper

An Analytical Load Distribution Solution for Bearings

2012-04-16
2012-01-0756
An analytical load distribution solution for calculation of the loads exerted by the rolling elements on the outer raceway in cylindrical roller bearings under radial loading is proposed in this paper. The loads exerted by the rolling elements are obtained based on an assumption that the profile of the maximum contact pressures of rolling elements resemble the profile of the contact pressure of the corresponding lumped cylinder. Based on this assumption, an analytical load distribution solution which gives the loads exerted by the rolling elements on the outer raceway is derived based on the non-conforming contact solution of Hertz and the conforming contact solution of Persson. These loads can be calculated from the analytical solution with the total applied load and the normalized contact pressure profile of the corresponding lumped cylinder. Two-dimensional finite element analysis was conducted to validate the proposed analytical solutions.
Technical Paper

Mechanical Strength and Failure Mode of Flow Drill Screw Joints in Coach-Peel Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses and Processing Conditions

2018-04-03
2018-01-0116
The mechanical strength and failure mode of flow drill screw (FDS) joints in coach-peel specimens of aluminum 6082-T6 sheets of three different thicknesses of 2.5, 2.8 and 3.0 mm and three different processing conditions under quasi-static loading conditions are investigated by experiments. The experimental results indicate that the mechanical strength and failure mode of FDS joints in coach-peel specimens are affected by the specimen thickness, clearance hole and stripping. The maximum load of a coach-peel specimen with an FDS joint with clearance hole increases as the thickness increases. For each of the thickness groups of 2.5, 2.8 and 3.0 mm, the maximum load of a coach-peel specimen with an FDS joint without clearance hole is lower than that with clearance hole. For the thickness group of 2.8 mm, the maximum load of a coach-peel specimen with a stripped FDS joint with clearance hole is lower than those of non-stripped ones with and without clearance hole.
Technical Paper

Determination of Assembly Stresses in Aluminum Knuckles

1999-03-01
1999-01-0345
In this paper, an analytical method is proposed for determining the stress distributions in steering knuckle/tapered stud assemblies. The method is based on solutions of the plane stress thick cylinder interference fit problem with modifications to account for the effects of stud taper and dissimilar component materials. The analytical solutions are applied to knuckle/tapered stud assemblies. The results from the analytical solutions are compared to those from a finite element analysis. It is shown that the analytical and FEA results are in good agreement for several load and frictional conditions, and the hoop and radial stress solutions presented in this paper are good engineering solutions to the knuckle/tapered stud problem where the draw distance is provided.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Journal Article

Failure Mode and Fatigue Behavior of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels

2013-04-08
2013-01-1023
Failure mode and fatigue behavior of friction stir spot welds made with convex and concave tools in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated based on experiments and a kinked fatigue crack growth model. Lap-shear specimens with the welds were tested under both quasistatic and cyclic loading conditions. Optical micrographs indicate that under both quasi-static and cyclic loading conditions, the welds mainly fail from cracks growing through the upper DP780GA sheets where the tools were plunged in during the welding processes. Based on the observed failure mode, a kinked fatigue crack growth model is adopted to estimate fatigue lives of the welds. In the kinked crack fatigue crack growth model, the stress intensity factor solutions for fatigue life estimations are based on the closed-form solutions for idealized spot welds in lap-shear specimens.
Journal Article

Fatigue Behavior of Self-Piercing Rivets and Clinch Joints in Lap-Shear Specimens of Aluminum Sheets

2013-04-08
2013-01-1024
Fatigue behavior of self-piercing rivets (SPRs) and clinch joints in lap-shear specimens of 6111-T4 aluminum sheets is investigated based on experimental observations and a fatigue life estimation model. Lap-shear specimens with SRPs and clinch joints were tested under cyclic loading conditions. Under cyclic loading conditions, fatigue cracks start from the curved interfacial surface of the upper sheet and then grow into the upper sheet thickness for both self-piercing rivets and clinch joints. The self-piercing rivets and clinch joints fail finally through the circumferential/transverse crack growth in the upper sheets and inner button crack growth, respectively. The structural stress solution and the experimental stress-life data for aluminum 6111-T4 sheets are adopted to estimate the fatigue lives of both types of joints. The fatigue life estimations based on the structural stress model show good agreement with the experimental results.
Journal Article

Failure Mode and Fatigue Behavior of Ultrasonic Spot Welds with Adhesive in Lap-Shear Specimens of Magnesium and Steel Sheets

2013-04-08
2013-01-1020
Failure modes and fatigue behaviors of ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets with and without adhesive are investigated. Ultrasonic spot welded, adhesive-bonded, and weld-bonded lap-shear specimens were made. These lap-shear specimens were tested under quasi-static and cyclic loading conditions. The ultrasonic spot weld appears not to provide extra strength to the weld-bonded lap-shear specimen under quasi-static and cyclic loading conditions. The quasi-static and fatigue strengths of adhesive-bonded and weld-bonded lap-shear specimens appear to be the same. For the ultrasonic spot welded lap-shear specimens, the optical micrographs indicate that failure mode changes from the partial nugget pullout mode under quasi-static and low-cycle loading conditions to the kinked crack growth mode under high-cycle loading conditions.
Journal Article

Modeling of Failure Modes of Gas Metal Arc Welds in Notched Lap-Shear Specimens of HSLA Steel

2014-04-01
2014-01-0784
The failure modes of gas metal arc welds in notched lap-shear specimens of high strength low alloy (HSLA) steel are investigated. Notched lap-shear specimens of gas metal arc welds were first made. Quasi-static test results of the notched lap-shear specimens showed two failure locations for the welds. The specimens cut from coupons with shorter weld lengths failed near the weld root whereas the specimens cut from coupons with longer weld lengths failed near the weld toe. Micro-hardness tests were conducted in order to provide an assessment of the mechanical properties of the base metal, the heat affected zone, and the weld metal. In order to understand the failure modes of these welds, finite element models were developed with the geometric characteristics of the weld metals and heat affected zones designed to match those of the micrographs of the cross sections for the long and short welds.
Journal Article

Stress Intensity Factor Solutions for Welds in Lap-Shear Specimens under Clamped Loading Conditions

2016-04-05
2016-01-0504
Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Effect of a Deformable Roller on Residual Stress Distribution for Elastic-Plastic Flat Plate Rolling under Plane Strain Conditions

2012-04-16
2012-01-0190
In this paper, the differences of the residual stresses due to rolling in a finite elastic-plastic plate by rigid and elastic deformable rollers at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the rollers are modeled both as rigid and linear elastic, and have frictionless contact with the elastic-plastic finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. Two new numerical schemes are developed to represent the elastic roller to model the indentation and rolling. The results of the contact pressure and subsurface stress distributions from the two numerical schemes are almost identical.
Journal Article

Failure Modes of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels under Quasi-Static and Cyclic Loading Conditions

2012-04-16
2012-01-0479
Failure modes of friction stir spot welds in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated under quasi-static and cyclic loading conditions based on experimental observations. Optical micrographs of dissimilar DP780GA/HSBS friction stir spot welds made by a concave tool before and after failure are examined. The micrographs indicate that the failure modes of the welds under quasi-static and cyclic loading conditions are quite similar. The micrographs show that the DP780GA/HSBS welds mainly fail from cracks growing through the upper DP780GA sheets where the concave tool was plunged into during the welding process. Based on the observed failure modes, a kinked fatigue crack growth model is adopted to estimate fatigue lives.
Journal Article

Elastic-Plastic Indentation and Flat Plate Rolling under Plane Strain Conditions

2011-04-12
2011-01-0035
In this paper, residual stresses due to single indentation and rolling on a finite plate at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the roller is modeled as rigid and has frictionless contact with the finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. For indentation and rolling at high rolling loads with extensive plastic deformation, the computational results show that the contact pressure distributions are quite different and they are also significantly different from the elastic Hertzian pressure distribution. The computational results for the rolling case show a significantly higher longitudinal compressive residual stress and a lower out-of-plane compressive residual stress along the contact surface when compared to those for the single indentation case.
Journal Article

Fatigue Failure of Laser Welds in Lap-Shear Specimens of High Strength Low Alloy (HSLA) Steels under Cyclic Loading Conditions

2011-04-12
2011-01-0473
In this paper, the fatigue behavior of laser welds in lap-shear specimens of non-galvanized SAE J2340 300Y high strength low alloy (HSLA) steel sheets is investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the laser welds before and after failure under quasi static and cyclic loading conditions are examined. The micrographs show that the failure modes of laser welds under quasi-static and cyclic loading conditions are quite different. Under quasi-static loading conditions, the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat affected zone at a distance to the pre-existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets.
X