Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Journal Article

The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics

2017-06-05
2017-01-1796
Ported shroud compressor covers recirculate low momentum air near the inducer blade tips, and the use of these devices has traditionally been confined to extending the low-flow operating region at elevated rotational speeds for compressors on compression-ignition (CI) engines. Implementation of ported shrouds on compressors for spark-ignition (SI) engines has been generally avoided due to operation at pressure ratios below the region where ported shrouds improve low-flow range, the slight efficiency penalty, and the perception of increased noise. The present study provides an experimental investigation of performance and acoustics for a SI engine turbocharger compressor both with a ported shroud and without (baseline). The objective of implementing the ported shroud was to reduce mid-flow range broadband whoosh noise of the baseline compressor over 4-12 kHz.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Technical Paper

Surge Prediction in a Single Sequential Turbocharger (SST) Compressor Using Computational Fluid Dynamics

2019-06-05
2019-01-1490
The Single Sequential Turbocharger (SST) used in Ford’s 6.7L Scorpion Diesel is analyzed using Computational Fluid Dynamics (CFD) to draw conclusions about the compressor stability at low mass flows. The SST compressor concept consists of a double-sided wheel which flows in parallel fed by two separate inlets (front and rear), followed by a single vane-less diffuser, and a volute. CFD simulations for the full stage are performed at low mass flow rates Both, front and rear, sides have ported shroud casing-treatment (CT) in the inlet region. An objective of the analysis is to determine which side of the SST unit compressor (front or rear on the double-sided wheel) suffers flow break down first as the mass flow is reduced, and its impact on the overall stability of the SST compressor. Another objective is to better understand the interactions between the compressor inlet flow and the flow through the casing-treatment.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
X