Refine Your Search

null

Search Results

Viewing 1 to 15 of 15
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Technical Paper

Opportunities for Frontal Crash Protection at Speeds Greater than 35 MPH

1991-02-01
910807
The National Highway Traffic Safety Administration has sponsored extensive research to improve the frontal protection of motor vehicles. Most of the research was conducted during the 1970's when belt usage rates were less than 10%. At that time, the research objectives did not anticipate the combination of air bags and three point manual belts as the restraint of choice for the 1990's. Consequently, little research was undertaken to extend the performance of this combination. However, the research conducted at that time offers opportunities for significant additional improvements in frontal protection. The purpose of this paper is to summarize some of the relevant research which was sponsored by NHTSA under the direction of the authors. Results will be highlighted which are particularly applicable to current vehicle configurations. Opportunities for further improvement, and required research are discussed.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Crash Simulations to Understand Injury Mechanisms in Maneuver Induced Rollover Crashes

2004-03-08
2004-01-0330
Real world crashes in NASS/CDS 1997 to 2000 were examined individually in order to find patterns in single vehicle rollover crashes. Typical maneuver induced rollovers of SUV's were reconstructed using the HVE model. From HVE and roll event reconstructions, the values of longitudinal, lateral, and vertical displacement, and roll, pitch, and yaw angle, for the pre-roll and rollover event were calculated. These values were used as inputs to a MADYMO model for simulated vehicle motion to predict occupant kinematics. Both near-side and far-side rollovers were simulated. The MADYMO model provided estimates of head velocity for the various rollover scenarios for a belted driver. In both near-side and far-side rollovers of the type reconstructed, the lateral component of head velocity was the greatest. Maximum head velocities of 5.3 m/s were predicted. The simulations were for two complete rollovers. The highest head velocity occurred during the first three quarter turns.
Technical Paper

Occupant Injury Patterns in Side Crashes

2001-03-05
2001-01-0723
This paper presents an analysis of the National Automotive Sampling System (NASS) and the Fatal Accident Reporting Systems (FARS) data for the combined years 1988–97 with respect to side impacts. Accident variables, vehicle variables, occupant variables and their interactions have been considered, with special emphasis on occupant injury patterns. The crash modes considered are car-to-car, car-to-LTV (light trucks and vans) and car to narrow object, with special emphasis on the latter two. This study was undertaken to obtain a better understanding of injury patterns in lateral impacts, their associated causation factors, and to obtain information that will assist in prioritizing crash injury research problems in near side impacts. Of particular interest is the increase in the population of light trucks and vans and their influence on side impact priorities. Conclusions will be drawn regarding the frequency and injury severity of car-to-LTV’s and car to narrow objects.
Technical Paper

Airbag Protected Crash Victims - The Challenge of Identifying Occult Injuries

1994-03-01
940714
A multidisciplinary, automobile crash investigation team at the Jackson Memorial Hospital/Ryder Trauma Center in Miami, Florida, is conducting a detailed medical and engineering study. The focus is restrained (seatbelts and/or air bag) occupants involved in frontal crashes, who have also been severely injured. More than 60 crashes have been included in the study to date. Analysis of the initial data indicates that restraint systems are working to reduce many of the head and chest injuries which unrestrained occupants suffer. However, internal injuries among air bag-protected occupants may be unrecognized in the field providing new challenges in triage and injury diagnosis. In other cases, survival in extremely high severity crashes presents trauma management challenges due to the extent and complexity of the multiple injuries which result. The paper provides case examples to illustrate types of chest and abdominal injuries associated with air bag cases.
Technical Paper

Chest and Abdominal Injuries Suffered by Restraint Occupants

1995-02-01
950657
This paper is based on the crash and casualty experience compiled by the National Highway Traffic Safety Administration's (NHTSA) National Accident Sampling System, Crashworthiness Data (NASS/CDS 1988-1992), and by the William Lehman Injury Research Center (University of Miami/Jackson Memorial Hospital/Ryder Trauma Center) crash data files. The NASS/CDS files provide data on injuries to occupants in all types of tow-away crashes. The William Lehman Injury Research Center files provide detailed crash analysis and injury documentation of more than 100 restrained occupants with injuries from frontal crashes. These files provide a basis for recognizing injury patterns among restrained occupants and postulating their causes. The purpose of this paper is to report on an observed pattern of liver and spleen injuries suffered by drivers wearing shoulder belts without the lap belt fastened.
Technical Paper

Injuries Sustained by Air Bag Protected Drivers

1996-02-01
960660
The William Lehman Injury Research Center has conducted multi-disciplinary investigations of fifty crashes involving drivers protected by air bags. In all cases, serious injuries were suspected. Nine cases involved fatal injuries. These cases are not representative of crashes in general. However, when used in conjunction with NASS/CDS they provide insight into the most severe injuries in crashes of vehicles equipped with air bags. A comparison with data from the National Accident Sampling System; Crashworthiness Data System (NASS/CDS) shows that head injury and abdominal injury make up a larger fraction in the Lehman data than in NASS/CDS. Examination of fatal cases indicates that head injuries are frequently caused by intruding structure or by unfavorable occupant kinematics among the unrestrained population.
Technical Paper

Injury Risks in Cars with Different Air Bag Deployment Rates

1997-02-24
970491
Automobile insurance claims of two popular midsize cars with different air bag deployment frequencies -- the Dodge/Plymouth Neon and Honda Civic -- were examined to determine performance in higher severity crashes (the upper 30 percent of crashes ranked by adjusted repair cost). Previously, it was found that drivers sustained more, mainly minor, injuries in the Neon which had a higher deployment frequency in low speed crashes. This study examined, for these two cars, whether there was any trade-off associated with a higher deployment threshold. It was found that even at higher speeds, the Neon had a greater frequency of air bag deployments, which in turn resulted in a greater likelihood of driver injury. Once again upper extremity injuries were most prevalent for Neon drivers and were highest for female drivers. At the same time, there was little evidence that driver protection was compromised in the Civic in the more important high speed crashes.
Technical Paper

Reconstruction of Frontal Accidents Using the CVS-3D Model

1984-04-01
840869
The Crash Victim Simulator Three Dimensional Model (CVS-3D) allows the simulation of the kinematics and responses of a motor vehicle occupant or pedestrian during a crash. This paper summarizes the data requirements for the CVS-3D Model, the sources of data, and the research underway to provide additional data for modeling the occupant and the vehicle. An example of the use of the model in reconstructing an offset frontal accident is included. The results computed by the model are quite reasonable when compared with the injuries received by the occupant. The insights into the events which occurred during the crash are excellent.
Technical Paper

Recent Improvements in Occupant Crash Simulation Capabilities of the CVS/ATB Model

1988-02-01
880655
The CVS/ATB (Crash Victim Simulator/ Articulated Total Body) computer program solves the equations of motion in three dimensional space for a set of rigid bodies connected by joints. The program permits the specification of contact interaction properties between the rigid bodies and the surrounding environment. It is, therefore, possible to specify initial conditions of motion for the rigid bodies, and calculate the subsequent motion resulting from the forces imposed by the environment. The program is sufficiently general that it can be applied to a wide range of physical dynamic situations. However, the principal motivation for its development was to evaluate the interactions of the human body with the environment inside a motor vehicle during a crash. Subsequently, it has been applied to a number of other dynamic simulations including pedestrian to vehicle impacts and the emergency escape of air crew from aircraft. The CVS/ATB program is in the public domain.
Technical Paper

Light Truck Safety Research in NHTSA

1987-07-01
871099
This paper describes and references published NHTSA safety research relative to problem definition and countermeasures evaluation for light trucks and vans. The research cited includes accident data analysis, vehicle component developments, air bag and passive belt research, and testing procedure developments in both crashworthiness and crash avoidance areas. Research programs underway which have application to light trucks and vans are indicated.
Technical Paper

Crash Exposure and Crashworthiness of Sport Utility Vehicles

1999-03-01
1999-01-0063
This paper examines the crash involvement and occupant safety record of sport utility vehicles (SUV’s) in comparison with those of cars, vans, and pickups. The investigation is based on the crash experience of the cited vehicles on the US roads, from 1988 to 1996, as compiled in the National Highway Traffic Safety Administration’s (NHTSA’s) records. In comparison with passenger car occupants, SUV occupants are exposed to significantly lower crash severities in planar crashes and they are younger. SUV occupants are underrepresented in crashes with other vehicles, but they are more frequently exposed to rollovers (8.7% vs. 33%). The overall belt use rate in SUV’s is about the same as for passenger cars. The overall belt use rate in rollover crashes is much lower than in planar crashes -51% for rollover vs. 62% for planar.
Technical Paper

Severe Head and Neck Injuries in NASS Rear Impacts

2008-04-14
2008-01-0190
In this paper the characteristics of rear impact crashes are examined. General information about rear impact collisions is derived from recent data from the National Automotive Sampling System, General Estimates System (NASS/GES) and Fatality Analysis Reporting System (FARS) as reported in the annual National Highway Traffic Safety Administration (NHTSA) Traffic Safety Facts. Additional details about the frequency, severity, type, and cause of injuries to front seat outboard occupants is analyzed using the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS) data from 1997 to 2005. Serious head and neck injuries are focused on for further analysis. Specific cases from the CDS database that meet this classification are examined. Federal Motor Vehicle Safety Standard (FMVSS) 301-R test data is used to analyze occupant, seat, and vehicle kinematics in single impact rear collisions and to look at the occupant rebound velocity.
Technical Paper

Residual Injuries to Occupants Protected by Restraint Systems

1989-09-01
891974
This paper examines the distribution of injuries to belted occupants involved in frontal crashes, using data from the National Accident Sampling System. Similar studies of data from Canada, Britain, and Federal Republic of Germany are summarized. The studies are consistent in showing that head and chest injuries continue to be the most harmful to belted occupants. For restrained drivers, liver injuries contribute a significant level of harm among chest/abdominal injuries. Other significant lesions of nearly equal weight are arterial, heart, lung/pulmonary, skeletal, and crushing injuries. Brain injuries are by far the most harmful head injury, followed by skull fracture and facial fracture. The diverse distribution of injuries, and the wide variation in occupant sizes and injury tolerances are significant considerations in optimizing restraint systems for maximum injury reduction in real crashes.
X