Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Foot and Ankle Finite Element Modeling Using Ct-Scan Data

1999-10-10
99SC11
Although not life threatening in most cases, victims of lower extremity injuries frequently end up living with a poor quality of life. The implementations of airbag supplement restraint systems significantly reduce the incidence of head and chest injuries. However, the frequency of leg injuries remains high. Several finite element models of the foot and ankle have been developed to further the understanding of this injury mechanism. None of those models employed accurate geometry among various bony segments. The objective of this study is to develop a foot and ankle finite element model based on CT scan data so that joint geometry can be accurately represented. The model was validated against experimental data for several different configurations including typical car crash situations.
Technical Paper

Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model

1999-10-10
99SC22
Relative motion between the brain and skull may explain many types of brain injury such as intracerebral hematomas due to bridging veins rupture [1] and cerebral contusions. However, no experimental methods have been developed to measure the magnitude of this motion. Consequently, relative motion between the brain and skull predicted by analytical tools has never been validated. In this study, radio opaque markers were placed in the skull and neutral density markers were placed in the brain in two vertical columns in the occipitoparietal and temporoparietal regions. A bi-planar, high-speed x-ray system was used to track the motion of these markers. Due to limitations in current technology to record the x-ray image on high-speed video cameras, only low- speed (﹤ 4m/s) impact data were available.
Technical Paper

AN ANALYSIS OF NCAP SIDE IMPACT CRASH DATA

1998-05-31
986235
Since 1990, the National Highway Traffic Safety Administration (NHTSA) implemented a dynamic side impact compliance test. This compliance test, Federal Motor Vehicle Safety Standard (FMVSS) No. 214, is a nearly right angle side impact in which the striking vehicle moves at 53.6 kmph into the struck vehicle. In 1997, NHTSA began testing passenger cars in side impact in the New Car Assessment Program (NCAP). In the USA NCAP side impact, the striking vehicle is towed at a 8 kmph higher speed than in the compliance test. An analysis has begun on the data from the first NCAP side impact tests, thirty-two in number. In the crashes, accelerometers were installed in the door and door frames of the struck vehicle. Using the accelerometers on the vehicle structure and in the side impact dummy, the crash event was investigated. One tool used in the investigation was the velocity-versus-time diagram.
Technical Paper

A Study of the IIHS Frontal Pole Impact Test

2008-04-14
2008-01-0507
According to the Fatality Analysis Reporting System (FARS, 1995-2004), over 20 percent of fatal frontal crashes are into fixed narrow objects such as trees and utility poles in real world crashes. The Insurance Institute for Highway Safety (IIHS) has studied the frontal pole impact test since 2005, conducting a series of tests using passenger cars that are rated “Good” from the IIHS frontal offset test. Passenger cars were impacted into a 10-inch-diameter rigid pole at 64-kph. The alignment of the pole along the centerline of the vehicles in frontal impact was varied to study the influence on dummy injury metrics. This paper evaluates the frontal center pole test conducted by the IIHS. The IIHS tests 21 crashes impacted by the rigid pole using 5 vehicle models with two dummies in the front seat. Intrusions and dummy readings were reviewed according to the frontal offset rating criteria of the IIHS for structural performance and injury measurement.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Reconstruction of Pediatric Occupant Kinematic Responses Using Finite Element Method in a Real-World Lateral Impact

2017-03-28
2017-01-1462
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinematic responses and injury mechanism. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Parameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, were analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
Technical Paper

Development of Dummy and Injury index for NHTSA's Thoracic Side Impact Protection Research Program

1984-04-01
840885
Since 1976, the National Highway Traffic Safety Administration (NHTSA) has pursued biomechanical research concerning lateral impacts to automotive occupants. These efforts have included (a) the generation of an experimental data base containing both detailed engineering and physiological responses of human surrogates experiencing lateral impacts, (b) the analysis of this data base to develop both an injury index linking the engineering parameters to an injury severity level and response corridors to guide in the design of a test dummy, and (c) the development and refinement of a side impact test dummy suitable for use in safety systems development and evaluation. The progress of these efforts has been periodically reported in the literature [1-17]* and these references document the evolutionary trail NHTSA has followed over the duration of this research program.
Technical Paper

Side Impact - The Biofidelity of NHTSA's Proposed ATD and Efficacy of TTI

1986-10-27
861877
A number of tests conducted under the sponsorship of the FAT were reported in papers at two previous Stapp Conferences and an Experimental Safety Vehicle Conference. These tests featured human cadavers and three different Anthropomorphic Test Devices (ATD) designed for use in lateral impacts. Test subjects were placed in Opel car bodies and impacted laterally by CCMC moving deformable barriers. In the previous papers, the reported responses of the human cadavers had wide variability and none of the ATD's studied featured good biofidelity. In this effort, a reexamination of the available data was undertaken and the process and results of applying different analysis techniques to the cadaver data, which resulted in significantly reduced scatter and variability, are discussed. Comparisons of the impact responses of the cadavers and the NHTSA developed Side Impact Dummy are also made.
Technical Paper

Interaction of Human Cadaver and Hybrid III Subjects with a Steering Assembly

1987-11-01
872202
Nineteen sled impact tests were conducted simulating a frontal collision exposure for an unrestrained driver. The deceleration sled buck configuration utilized the passenger compartment of a late model compact passenger vehicle, a rigid driver's seat, and a custom fabricated energy-absorbing steering column and wheel assembly. Sled impact velocities ranged from 24.1 to 42.6 km/hr. The purpose of the study was to investigate the kinematic and kinetic interaction of the driver and the energy-absorbing steering assembly and their relationship to the thoracic/abdominal injuries produced. The similarities and differences between human cadaver and anthropomorphic dummy subjects were quantified.
Technical Paper

Safety Restraint System Physical Evidence and Biomechanical Injury Potential Due to Belt Entanglement

2006-04-03
2006-01-1670
For more than 20 years, field research and laboratory testing has consistently demonstrated that wearing a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes [1, 2]. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards set forth seat belt buckle performance requirements to address buckle performance in accident conditions. However, several theories of buckle release or separation exist including: false latch, inadvertent release, and inertial release. Forensic investigations of vehicle crashes would benefit with diagnostic criteria which could distinguish between a buckle separation, a properly restrained occupant, and an unused or stowed seat belt. In the unlikely event of buckle separation, entanglement with the webbing would be expected if the occupant moves substantially as a result of the crash forces.
Technical Paper

Ankle Joint Injury Mechanism for Adults in Frontal Automotive Impact

1991-10-01
912902
Accident cases are examined to determine the injury mechanism for foot/ankle moderate and greater injuries in vehicle crashes. The authors examine 480 in-depth cases from the National Accident Sampling System for the years 1979 through 1987. An injury mechanism - a description of how the foot/ankle physically interacted with the interior of the vehicle - is assigned to each of the injured occupants. For the accidents in which the 480 occupants were injured, the more prominent types of vehicle collisions are characterized.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Side Impact Risk for 7-13 Year Old Children

2008-04-14
2008-01-0192
The purpose of this paper is to assess the vehicle environment that a child occupant, between the ages of seven and thirteen years old, is exposed to in a real world crash. The focus of analysis is on those child occupants that are seated at the struck side in a lateral collision. This study was based on data extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) between years 1991-2006. Analysis was based upon the evaluation of the projected consequence of injury to the child occupants. The societal costs generated as a result of occupant injuries were quantified. The societal cost, or Harm, acts as a measure of consequence of occupant exposure to the vehicle environment, when involved in a collision. The Harm was determined as a function of ΔV, principal direction of force, vehicle extent of damage, the pattern of damage to the vehicle, and the magnitude of intrusion based on the occupant seating position.
Technical Paper

Finite Element Modeling of Hybrid III Head-Neck Complex

1992-11-01
922526
A three-dimensional finite element model of the Hybrid III dummy head-neck complex was created to simulate the Amended Part 572 Head-Neck Pendulum Compliance Test, of the Code of Federal Regulations. The model consisted of a rigid head and five circular aluminum disks joined together by butyl elastomer rubber. Contact surfaces were defined to allow the anterior neck to separate upon an application of extension moments. Two mounting positions, one for flexion and the other one for extension, were used to simulate the head-neck calibration tests. An explicit finite element code PAM-CRASH was utilized to simulate the model dynamic responses. Simulation results were compared to experimental data obtained from First Technology Safety Systems Inc. Model predictions agreed well in both flexion and extension. This model can be used to study the head-neck biomechanics of the existing dummy as well as in the development of new dummies.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

The Efforts of the National Highway Traffic Safety Administration in the Development of Advanced Passive Protection Systems and Child Restraint Systems

1974-02-01
740580
This report presents an overview of the Occupant Packaging research program within the National Highway Traffic Safety Administration. The report discusses the program's efforts to establish the feasibilities of practical methods for providing the highest levels of occupant protection. In the area of frontal impact protection, work is progressing on advanced driver air bag systems, on a bag and bolster approach to passenger protection, on the development of improved inflation techniques for inflatables and on the passive application of the air belt concept. Efforts in the other areas of side, rear, and rollover protection are discussed as are NHTSA's efforts in child restraint research.
X