Refine Your Search

Search Results

Technical Paper

Improvement of Engine Performance With Lean Mixture Ignited By Diesel Fuel Injection and Internal Egr

2000-06-12
2000-05-0076
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. The internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the mixture temperature. The test engine was a 4-stroke, single- cylinder direct-injection diesel engine. The cooling system was forced-air cooling and displacement volume was about 211 (cm3). The compression ratio was about 19.9:1. The experiment was made under constant engine speed of 3000 (r/min). The boost pressure was maintained at 101.3 (kPa). Five values of mass flow rate of diesel fuel injection were selected from 0.060 (g/s) to 0.167 (g/s) and five levels of back pressure: 0), 26.7, 53.3, 80.0 and 106.6 (kPa) were selected for the experiment. The effect of internal EGR is varied by the back pressure level.
Technical Paper

A Study on the Compression Ignition Characteristics of FAME for Low Compression Ratio Diesel Engine

2012-10-23
2012-32-0010
The purpose of this study is to clarify ignition characteristics and engine performance of FAME for 4-stroke diesel engine in low compression ratios. Diesel fuel and coconut oil methyl ester (CME) were selected as test fuels, because CME consisted of saturate FAMEs which were good ignition characteristics. To reduce the compression ratio, thin copperplates were inserted between cylinder head and cylinder block and the compression ratio was reduced from 20.6 that was standard to 15. The engine starting test and an ordinary engine performance test were made at 3600 min.-₁. In engine starting test, the engine was soaked at room temperature and the ignition timing of diesel fuel was remarkably delayed compared with CME. When the compression ratio was 16, for diesel fuel, the misfiring cycles were included during engine warming up. In case of 15 of compression ratio, the engine could not be started by diesel fuel; however the engine could be run by CME.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Technical Paper

Influence of Electrical Supplied Energy and Characteristic Length on the Plasma Jet Ignition

1993-10-01
932750
The investigation regarding the plasma jet ignition was explored by using a combustion vessel. The first purpose is to elucidate the issuing duration and the penetration of hydrogen plasma jet. A temporal change of local electron temperature was measured along the central axis of plasma jet. A small characteristic length of igniter seems favorable with regard to the plasma jet penetration and the generation of high temperature, as compared with the case of the igniter that has the excessive cavity volume. The second purpose is to elucidate relationship between the characteristic length and the combustion enhancement effect, when the excessive volume of cavity and the excessive supplied electrical energy were used. The influence of the characteristic length on the plasma jet penetration and the combustion enhancement differs with the supplied energy. The combustion enhancement seems to be caused by the plasma jet in case of excessive supplied energy.
Journal Article

Application of Cellulosic Liquefaction Fuel (CLF) and Fatty Acid Methyl Ester (FAME) Blends for Diesel Engine

2010-09-28
2010-32-0080
A new bio-fuel i.e. the cellulosic liquefaction fuel (CLF) was developed for diesel engines. The cellulosic liquefaction fuel (CLF) was made from woods by the direct liquefaction process. CLF could not be completely mixed with diesel fuel, however CLF could be mixed with Fatty Acid Methyl Ester (FAME) and a diesel engine could be operated by CLF and FAME blends. In this study, CLF was divided into three fractions: 473 to 523 K (CLF1), 523 to 573 K (CLF2) and 573 K or more (CLF3) by fractional distillation in order to find CLF fraction which was suitable for diesel engine, and coconuts oil methyl ester (CME) was used as FAME. In the fuel droplet combustion tests, the combustion durations of CLFs were longer than those of diesel fuel and CME, and the combustion duration increased as the distillation temperature range rose, because CLF contained a lot of flame-resisting components like aromatic compounds.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Engine Performance of Lean Methanol-Air Mixture Ignited by Diesel Fuel Injection Applied with Internal EGR

2000-06-19
2000-01-2012
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by direct diesel fuel injection. In this study, the internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the temperature of the mixture before the ignition. It is confirmed that the lean methanol-air mixture of air-fuel ratio between 130 and 18 could be ignited and burned when the back pressure of 80 [kPa] is added. The ignition and combustion characteristics can be improved by the internal EGR, however the engine performance and NOx emission deteriorated.
Technical Paper

Application of Newly Developed Cellulosic Liquefaction Fuel for Diesel Engine

2009-11-03
2009-32-0132
A new bio-fuel i.e. the cellulosic liquefaction fuel (CLF) was developed for diesel engines. CLF was made from woods by direct liquefaction process. When neat CLF was supplied to diesel engine, the compression ignition did not occur, so that blend of CLF and diesel fuel was used. The engine could be operated when the mixing ratio of CLF was up to 35 wt%. CO, HC and NOx emissions were almost the same as those of diesel fuel when the mixing ratio of CLF was less than 20 wt% whereas the thermal efficiency slightly decreases with increase in CLF mixing ratio.
Technical Paper

Influence of Various Biodiesel Fuels on Diesel Engine Performance

2009-11-03
2009-32-0100
The composition ratio of saturated and unsaturated fatty acid methyl esters (FAME) is depended on feedstock. Three FAMEs: soybean (SME), palm (PME) and coconut oil (CME) methyl esters were mixed to make fuels which have different composition ratio. The ignitability of fuel which mainly consisted of unsaturated FAME was inferior. Power was slightly reduced with increasing of mixing ratio of CME; however exhaust gas emissions were improved because CME contained a lot of oxygen atoms. Fuel which was equal mixture SME and CME indicated almost the same ignition characteristic as that of PME because they have same composition ratio.
Technical Paper

A Study of IDI 2-Stroke Cycle Compression Ignition Engine with DME

2009-11-03
2009-32-0063
DME is alternate fuel for diesel engines, however DME has defects such as small lower calorific value, inferior lubricity and weak fuel penetration. To compensate disadvantages, In-direct injection 2-stroke diesel engine with low pressure fuel injection system was proposed. The fuel injection timing near TDC gave good performance because the heat loss of low temperature oxidation reaction reduced. The brake torque and brake thermal efficiency of 2-stroke IDI diesel engine were lower than those of 4-stroke engine. However, the exhaust gas emissions were very low level because the intake air leaked through the exhaust port and the exhaust gas was diluted.
Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

A Study on Influence of Forced Over Cooling on Diesel Engine Performance

2011-11-08
2011-32-0605
The ignitability and engine performance of FAMEs at the cold condition were experimentally investigated by using two FAMEs, i.e. coconut oil methyl ester (CME) and soybean oil methyl ester (SME). The cold start test and forced over cooling test were conducted. In the forced over cooling test, engine was forced cooled by the injecting water mist to engine cooling fin. In the cold start test, the cylinder pressure of CME rose earliest because CME has a superior ignitability. The crank angle at ignitions of diesel fuel and CME were not so affected by the forced over cooling, however ignition timing of SME was remarkably delayed. In cases of forced over cooling, COV of maximum combustion pressure of CME was lower than that of normal air cooling condition. The forced over cooling has a potential to reduce NOx emission, however HC, CO and smoke concentrations were increased in a high load due to incomplete combustion.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Technical Paper

The Application of Coconut-oil Methyl Ester for Diesel Engine

2007-10-30
2007-32-0065
The coconut-oil methyl ester is made from coconut oil and methanol, and both cold start performance and ignition characteristics of coconut-oil methyl ester are experimentally investigated by using a diesel engine. In experiments, diesel fuel and coconut-oil methyl ester are used and the blended ratio of coconut-oil methyl ester to diesel fuel is changed. The test is conducted at full load and 3000 rpm. The diesel engine can be run stably with any mixing ratio of coconut-oil methyl ester, however the power is slightly reduced with increasing the mixing ratio of coconut-oil methyl ester. In the cold start condition, when the mixing ratio of coconut-oil methyl ester increases, the combustion chamber wall temperature rises early and the ignition timing is improved. Therefore, the coconut-oil methyl ester has superior compression ignition characteristics and reduces exhaust gas emissions, so that the coconut-oil methyl ester is good alternative fuel for diesel engines.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

8 A Study of the Influence of Fuel Temperature on Emission Characteristics and Engine Performance of Compression Ignition Engine

2002-10-29
2002-32-1777
In this study, the heated fuels were provided to the diesel engine in order to activate the fuel before the injection. Two test fuels: the normal diesel fuel and cetane, which have different boiling points were used. For both normal diesel fuel and cetane, crank angles at ignition and maximum pressure are delayed and the maximum combustion pressure is decreased as the fuel temperature rises. In cases of large and middle mass flow rate of fuel injection, the brake thermal efficiency and brake mean effective pressure are decreased when the fuel temperature is higher than 570 [K]. However, in the case of small mass flow rate of fuel injection, the brake thermal efficiency is almost independent of fuel temperature. HC and CO concentrations in the exhaust gas emission show constant values regardless of fuel temperature. However, NOx concentration is gradually decreased as the fuel temperature rises.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Technical Paper

An Effect of Bio Diesel Fuel for Low Compression Ratio Diesel Engine

2017-11-05
2017-32-0088
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
X