Refine Your Search

Topic

Search Results

Technical Paper

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-05-07
2001-01-1909
We have performed simulations and experiments to characterize the mixture formation in spray-guided direct injected spark ignition (DISI) gasoline engines and to help to understand features of the combustion process, which are characteristic for this engine concept. The 3-D computations are based on the KIVA 3 code, in which basic submodels of spray processes have been systematically modified at ETH during the last years. In this study, the break-up model for the hollow-cone spray typical for DISI engines has been validated through an extended comparison with both shadowgraphs and Mie-scattering results in a high-pressure-high-temperature, constant volume combustion cell at ambient conditions relevant for DISI operation, with and without significant droplet evaporation. Computational results in a single-cylinder research engine have been then obtained at a given engine speed for varying load (fuel mass per stroke), swirl and fuel injection pressure.
Technical Paper

A Computational Investigation of Unsteady Heat Flux Through an I.C. Engine Wall Including Soot Layer Dynamics

1997-02-24
970063
This paper deals with the influence of a wall soot layer of varying thickness on the unsteady heat transfer between the fluid and the engine cylinder wall during a full cycle of a four-stroke Diesel engine operation. For that purpose a computational investigation has been carried out, using a one-dimensional model of a multi-layer solid wall for simulating the transient response within the confinement of the combustion chamber. The soot layer is thereby of varying thickness over time, depending on the relative rates of deposition and oxidation. Deposition is accounted for due to a thermophoretic mechanism, while oxidation is described by means of an Arrhenius type expression. Results of the computations obtained so far show that the substrate wall temperature has a significant effect on the soot layer dynamics and thus on the wall heat flux to the combustion chamber wall.
Technical Paper

Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine

2012-04-16
2012-01-0825
The behavior of spray auto-ignition and combustion of a diesel spray in a lean premixed methane/air charge was investigated. A rapid compression expansion machine with a free-floating piston was employed to reach engine-relevant conditions at start of injection of the micro diesel pilot. The methane content in the lean ambient gas mixture was varied by injecting different amounts of methane directly into the combustion chamber, the ambient equivalence ratio for the methane content ranged from 0.0 (pure air) to 0.65. Two different nozzle tips with three and six orifices were employed. The amount of pilot fuel injected ranged between 0.8 and 1.8 percent of the total energy in the combustion chamber. Filtered OH chemiluminescence images of the combustion were taken with a UV-intensified high-speed camera through the optical access in the piston.
Technical Paper

Influence of Injector Diameter (0.2-1.2 mm range) on Diesel Spray Combustion: Measurements and CFD Simulations

2014-04-01
2014-01-1419
In this study, the influence of injector diameter on the combustion of diesel sprays in an optically accessible combustion chamber of marine engine dimensions and conditions has been investigated experimentally as well as numerically. Five different orifice diameters ranging between 0.2 and 1.2 mm have been considered at two different ambient temperatures: a “cold” case with 800 K and a “warm” case with 900 K, resulting in a total of ten different test conditions. In the experiment, the reactive spray flames were characterized by means of high-speed OH* chemiluminescence imaging. The measurements revealed a weak impact of the injector diameter on ignition delay (ID) time and flame lift-off length (LOL) whereas the influence of ambient temperature was found to be more pronounced, consistent with former studies in the literature for smaller orifice diameters.
Technical Paper

CMC Model Applied to Marine Diesel Spray Combustion: Influence of Fuel Evaporation Terms

2014-10-13
2014-01-2738
This study presents an application of the conditional moment closure (CMC) combustion model to marine diesel sprays. In particular, the influence of fuel evaporation terms has been investigated for the CMC modeling framework. This is motivated by the fact that substantial overlap between the dense fuel spray and flame area is encountered for sprays in typical large two-stroke marine diesel engines which employ fuel injectors with orifice diameters of the order of one millimeter. Simulation results are first validated by means of experimental data from the Wärtsilä optically accessible marine spray combustion chamber in terms of non-reactive macroscopic spray development. Subsequently, reactive calculations are carried out and validated in terms of ignition delay time, ignition location, flame lift-off length and temporal evolution of the flame region. Finally, the influence of droplet terms on spray combustion is analyzed in detail.
Technical Paper

Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine

2013-09-08
2013-24-0112
Ignition systems for large lean burn gas engines are challenged by large energy deposition requirements to ensure stable and reliable inflammation of the premixed charge. In this study, two different ignition systems are investigated experimentally: ignition by means of injecting a small amount of diesel spray and its subsequent autoignition is compared to the ignition with an un-scavenged pre-chamber spark plug over a wide range of engine relevant conditions such as methane equivalence ratios and thermomechanical states. The ignition behavior as well as the combustion phase of the two systems is investigated using an optically accessible Rapid Compression Expansion Machine (RCEM). Filtered OH-chemiluminescence images of the ignition and combustion were taken with a UV intensified high speed camera through the piston window.
Technical Paper

Influence of Water-Diesel Fuel Emulsions and EGR on Combustion and Exhaust Emissions of Heavy Duty DI-Diesel Engines equipped with Common-Rail Injection System

2003-10-27
2003-01-3146
In this paper we investigate the effect of the introduction of water in the combustion chamber of a DI-diesel engine on combustion characteristics and pollutant formation, by using water-diesel fuel emulsions with three distinct water amounts (13%, 21% and 30%). For the measurements we use a modern 4-cylinder DI-diesel engine with high-pressure common rail fuel injection and EGR system. The engine investigations are conducted at constant speed in different operating points of the engine map with wide variations of injection setting parameters and EGR rate. The main concern refers to the interpretation of both measured values and relevant thermodynamic variables, which are computed with analytical instruments (heat release rate, ignition delay, reciprocal characteristic mixing time, etc). The analysis of the measured and computed data shows clear trends and detailed evaluations on the behavior of water-diesel fuel emulsions in the engine process are possible.
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Characterization of the Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-0834
The physical behavior of the combustion process in a jet-guided direct injection spark ignition engine has been investigated with three different measurement techniques. These are flame visualization by use of endoscopy, ion-current sensing at 16 different locations in the combustion chamber and the estimation of the flame temperature as well as soot concentration based on multi-wavelength-pyrometry. The results of all these measurement techniques are in good agreement between each other and give a coherent picture of the physical behavior of the combustion process and make it possible to characterize the main influence parameters on combustion. This serves as a basis for validation and improvement of simulation tools for the engine thermodynamics and combustion.
Journal Article

Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations

2013-09-08
2013-24-0004
The combustion of gaseous fuels like methane in internal combustion engines is an interesting alternative to the conventional gasoline and diesel fuels. Reasons are the availability of the resource and the significant advantage in terms of CO2 emissions due to the beneficial C/H ratio. One difficulty of gaseous fuels is the preparation of the gas/air mixtures for all operation points, since the volumetric energy density of the fuel is lower compared to conventional liquid fuels. Low-pressure port-injected systems suffer from substantially reduced volumetric efficiencies. Direct injection systems avoid such losses; in order to deliver enough fuel into the cylinder, high pressures are however needed for the gas injection which forces the fuel to enter the cylinder at supersonic speed followed by a Mach disk. The detailed modeling of these physical effects is very challenging, since the fluid velocities and pressure and velocity gradients at the Mach disc are very high.
Journal Article

Experimental Investigation of Multi-In-Cylinder Pyrometer Measurements and Exhaust Soot Emissions Under Steady and Transient Operation of a Heavy-Duty Diesel Engine

2013-09-08
2013-24-0177
Future engine emission legislation regulates soot from Diesel engines strictly and requires improvements in engine calibration, fast response sensor equipment and exhaust gas aftertreatment systems. The in-cylinder phenomena of soot formation and oxidation can be analysed using a pyrometer with optical access to the combustion chamber. The pyrometer collects the radiation of soot particles during diffusion combustion, and allows the calculation of soot temperature and a proportional value for the in-cylinder soot density (KL). A four-cylinder heavy-duty Diesel engine was equipped in all cylinders with prototype pyrometers and state of the art pressure transducers. The cylinder specific data was recorded crank angle-resolved for a set of steady-state and transient operating conditions, as well as exhaust gas recirculation (EGR) addition and over a wide range of soot emissions.
Journal Article

Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas

2014-10-13
2014-01-2607
Knock is often the main limiting factor for brake efficiency in spark ignition engines and is mostly attributed to auto-ignition of the unburned mixture in front of the flame. In order to study knock in a systematic way, spark angle sweeps with ethanol and iso-octane have been carried out on single cylinder spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed fuel/air mixtures. Much earlier and stronger knock can be observed for iso-octane compared to ethanol at otherwise same engine operating conditions due to the cooling effect and higher octane number of ethanol, leading to different cycle-to-cycle variation behavior. Detailed chemical kinetic mechanisms are used to compute ignition delay times at conditions relevant to the measurements and are compared to empirical correlations available in literature. The different correlations are used in a knock model approach and are tested against the measurement data.
Journal Article

Extending the NOx Reduction Potential with Miller Valve Timing Using Pilot Fuel Injection on a Heavy-Duty Diesel Engine

2014-10-13
2014-01-2632
New emission legislations applicable in the near future to sea-going vessels, off-road and off-highway vehicles require drastic nitric oxides emission reduction. A promising approach to achieve part of this decrease is charge air temperature reduction using Miller timing. However, it has been shown in literature that the reduction potential is limited, achieving a minimum in NOx emissions at a certain end-of-compression temperature. Further temperature reduction has shown to increase NOx emissions again. Some studies have shown that this increase is correlated to an increased amount of premixed combustion. In this work, the effects of pilot injection on engine out NOx emissions for very early intake valve closure (i.e. extreme Miller), high boost pressures and cold end-of-compression in-cylinder conditions are investigated. The experiments are carried out on a 3.96L single cylinder heavy-duty common-rail Diesel engine operating at 1000 rpm and at constant global air-to-fuel ratio.
Journal Article

LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine

2014-04-01
2014-01-1138
Large eddy simulations (LES) of a port-injected 4-valve spark ignited (SI) engine have been carried out with the emphasis on the combustion process. The considered operating point is close to full load at 3,500 RPM and exhibits considerable cyclic variation in terms of the in-cylinder pressure traces, which can be related to fluctuations in the combustion process. In order to characterize these fluctuations, a statistically relevant number of subsequent cycles, namely up to 40, have been computed in the multi-cycle analysis. In contrast to other LES studies of SI engines, here the G-equation (a level set approach) has been adopted to model the premixed combustion in the framework of the STAR-CD/es-ICE flow field solver. Tuning parameters are identified and their impact on the result is addressed.
Journal Article

The Effect of Cycle-to-Cycle Variations on the NOx-SFC Tradeoff in Diesel Engines under Long Ignition Delay Conditions

2017-09-04
2017-24-0100
Cycle-to-cycle variations in internal combustion engines are known to lead to limitations in engine load and efficiency, as well as increases in emissions. Recent research has led to the identification of the source of cyclic variations of pressure, soot and NO emissions in direct injection common rail diesel engines, when employing a single block injection and operating under long ignition delay conditions. The variations in peak pressure arise from changes in the diffusion combustion rate, caused by randomly occurring in-cylinder pressure fluctuations. These fluctuations result from the excitation of the first radial mode of vibration of the cylinder gases which arises from the rapid premixed combustion after the long ignition delay period. Cycles with high-intensity fluctuations present faster diffusion combustion, resulting in higher cycle peak pressure, as well as higher measured exhaust NO concentrations.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior

2017-09-04
2017-24-0094
Despite significant benefits in terms of the ignition enhancement, the strength and timing of the turbulent flame jets subsequently issuing into the main chamber strongly depend on the pre-chamber combustion process and, thus, are sensitive to the specific engine operating conditions it experienced. This poses considerable difficulties in optimizing engine operating conditions as well as controlling engine performance. This paper investigates the influence of engine operating conditions on the pre-chamber combustion event using both experimental and numerical methods. A miniaturized piezo-electric pressure transducer was designed to be placed inside the engine cylinder head to record the pre-chamber inner volume pressure, in addition to conventional pressure indication inside the main chamber.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Development and Experimental Validation of a Fast Spray Ignition Model for Diesel Engines Using Insights from CFD Spray Calculations

2017-03-28
2017-01-0812
Modern Diesel engines have become ever more complex systems with many degrees of freedom. Simultaneously, with increasing computational power, simulations of engines have become more popular, and can be used to find the optimum set up of engine operation parameters which result in the desired point in the emission-efficiency trade off. With increasing number of engine operation parameter combinations, the number of calculations increase exponentially. Therefore, adequate models for combustion and emissions with limited calculation costs are required. For obvious reasons, the accuracy of the ignition timing is a key point for the following combustion and emission model quality. Furthermore, the combination of mixing and chemical processes during the ignition delay is very challenging to model in a fast way for a wide range of operation conditions.
X