Refine Your Search

Topic

Search Results

Technical Paper

Development and Validation of a Phenomenological Mean Value Soot Model for Common-Rail Diesel Engines

2009-04-20
2009-01-1277
A mean value soot model (MVSM) was developed and validated for the realtime prediction of the raw, engine-out soot emissions from common rail diesel engines. Through the consideration of five representative states during the combustion cycle, the developed MVSM determines the engine out soot emissions based on the soot formation and oxidation processes, using only parameters available from a standard engine control unit. 16 model parameters are used to describe the engine, fuel, and combustion characteristics, and must be determined for each engine and fuel combination. The MVSM was parameterized and validated using the measured soot emissions from two different engines operating with a total of three different fuels. After parameterization, the MVSM was capable of qualitatively and quantitatively reproducing the soot emissions for operating points throughout the entire operating map, including for operating regimes not considered during the parameterization.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Technical Paper

Near-Wall Unsteady Premixed Flame Propagation in S.I. Engines

1995-02-01
951001
A computational study of the near-wall premixed flame propagation in homogeneous charge spark ignited engines is presented on the basis of a spectral concept accounting for flow-chemistry interaction in the flamelet regime. Flame surface enhancement due to wrinkling and modification of the local laminar flame speed due to flame stretch are the main phenomena described by the model. A high pass filter in the turbulent kinetic energy spectrum associated with the distance between the ensemble-averaged flame front location and the solid surface has been also introduced. In addition a probability density function of instantaneous flamelet positions around the above mean flame front location allows to consider statistical effects in a simplified way. Issues of temperature distribution within the boundary layer and associated heat losses, except for the concept of a thermal quenching distance, are thereby not explicitly taken into account.
Technical Paper

Numerical Investigation of Nozzle-Geometry Variations and Back-Pressure Changes on High Pressure Gas Injections under Application-Relevant Conditions

2018-04-03
2018-01-1138
In the present work numerical simulations were carried out investigating the effect of fuel type, nozzle-geometry variations and back-pressure changes on high-pressure gas injections under application-relevant conditions. Methane, hydrogen and nitrogen with a total pressure of 500 bar served as high-pressure fuels and were injected into air at rest at 200 bar and 100 bar. Different nozzle shapes were simulated and the analysis of the results lead to a recommendation for the most advantageous geometry regarding jet penetration, volumetric growth, mixing enhancement and discharge coefficient. Additionally an artificial inlet boundary conditions was tested for the use with real-gas thermodynamics and was shown to be capable of reducing the simulation time significantly.
Technical Paper

Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES

2019-04-02
2019-01-0198
It is well-known that the spatial distribution of turbulence intensity and fuel concentration at spark-time play a pivotal role on the flame development within the pre-chamber in gas engines equipped with a scavenged pre-chamber. The combustion within the pre-chamber is in turn a determining factor in terms of combustion behaviour in the main chamber, and accordingly it influences the engine efficiency as well as pollutant emissions such as NOx and unburned hydrocarbons. This paper presents a numerical analysis of fuel concentration and turbulence distribution at spark time for an automotive-sized scavenged pre-chamber mounted at the head of a rapid compression-expansion machine (RCEM). Two different pre-chamber orifice orientations are considered: straight and tilted nozzles. The latter introduce a swirling flow within the pre-chamber. Simulations have been carried out using with two different turbulence models: Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES).
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Technical Paper

Clean Engine Vehicle A Natural Gas Driven Euro-4/SULEV with 30% Reduced CO2-Emissions

2004-03-08
2004-01-0645
The goal of the Clean Engine Vehicle project (CEV) was the conversion of a gasoline engine to dedicated natural gas operation in order to achieve a significant reduction in CO2 emissions. The targeted reduction was 30% compared with a gasoline vehicle with similar performance. Along with the reduction in emissions, the second major requirement of the project, however, was compliance of the results with Euro-4 and SULEV emission limits. The project entailed modifications to the engine and the pre-existing model-based engine control system, the introduction of an enhanced catalytic converter and downsizing and turbocharging of the engine. As required by the initiators of the project, all components used were commonly available, some of them just being optimized or modified for natural gas operation.
Technical Paper

Oxygenated Fuels for Particulate Emissions Reduction in Heavy-Duty DI-Diesel Engines with Common-Rail Fuel Injection

2000-10-16
2000-01-2885
Oxygenated fuel additives are currently an important research topic for particulate emissions reduction in diesel engines with direct injection (DI) to meet future emission regulations. In this work more than twenty oxygenated hydrocarbons from the literature were considered as diesel fuel additives. Butylal (an acetal compound, chemical formula C9H20O2) offers significant advantages over most other oxygenates in that its physical properties are very close to those of common diesel fuel. Wear scar measurements were conducted to evaluate the lubricity characteristics of diglyme (C6H14O3), ethyldiglyme (C8H18O3), butylal and different diesel-butylal mixtures. The results reveal the low lubricity of all oxygenated compounds. Thus, for the engine tests, a lubricity improver has been added to the diesel-butylal mixtures.
Technical Paper

A Computational Investigation of Unsteady Heat Flux Through an I.C. Engine Wall Including Soot Layer Dynamics

1997-02-24
970063
This paper deals with the influence of a wall soot layer of varying thickness on the unsteady heat transfer between the fluid and the engine cylinder wall during a full cycle of a four-stroke Diesel engine operation. For that purpose a computational investigation has been carried out, using a one-dimensional model of a multi-layer solid wall for simulating the transient response within the confinement of the combustion chamber. The soot layer is thereby of varying thickness over time, depending on the relative rates of deposition and oxidation. Deposition is accounted for due to a thermophoretic mechanism, while oxidation is described by means of an Arrhenius type expression. Results of the computations obtained so far show that the substrate wall temperature has a significant effect on the soot layer dynamics and thus on the wall heat flux to the combustion chamber wall.
Technical Paper

Reduction of NOx Emissions of D. I. Diesel Engines by Application of the Miller-System: An Experimental and Numerical Investigation

1996-02-01
960844
Emissions and performance parameters of a medium size, medium speed D.I. diesel engine with increased charge air pressure and reduced but fixed inlet valve opening period have been measured and compared to the standard engine. While power output and fuel consumption are slightly improved, nitric oxide emissions can be reduced by up to 20%. The measurements confirm the results of simulations for both performance and emissions, for which a quasidimensional model including detailed chemistry for nitric oxide prediction has been developed.
Technical Paper

THE Post Injection: Coalescence of 3D CFD-CMC Simulation, 2D Visualizations in a Constant Volume Chamber and Application in a Modern Passenger Car Diesel Engine

2015-09-06
2015-24-2515
Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in NOx emissions. However, an accurate, widely applicable rule of how to parameterize a post injection such that it provides a maximum reduction of PM emissions does not exist. Moreover, the underlying mechanisms are not thoroughly understood. In past research, the underlying mechanisms have been investigated in engine experiments, in constant volume chambers and also using detailed 3D CFD-CMC simulations. It has been observed that soot reduction due to a post injection is mainly due to two reasons: increased turbulence from the post injection during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. Those studies do not show a significant temperature rise caused by the post injection.
Technical Paper

Influence of Hydrogen-Rich-Gas Addition on Combustion, Pollutant Formation and Efficiency of an IC-SI Engine

2004-03-08
2004-01-0972
The addition of hydrogen-rich gas to gasoline in an Internal Combustion Engine seems to be particularly suitable to arrive at a near-zero emission Otto engine, which would be able to easily meet the most stringent regulations. In order to simulate the output of an on-board reformer that partially oxidizes gasoline, providing the hydrogen-rich gas, a bottled gas has been used. Detailed results of our measurements are here shown, such as fuel consumption, engine efficiency, exhaust emissions, analysis of the heat release rates and combustion duration, for both pure gasoline and blends with reformer gas. Additionally simulations have been performed to better understand the engine behaviour and NOx formation.
Technical Paper

Analysis of Factors Influencing Particulate Matter Emissions of a Compression-Ignition Direct-Injection Engine

1999-10-25
1999-01-3492
The relative amounts of heat released by premixed and by diffusion controlled combustion is varied in a compression-ignition engine run on the test bench through variation of four operating parameters. Exhaust gas is led to a differential mobility particle sizer and to filters that are loaded for gravimetric analysis. Particle size distributions are acquired in the 16÷630 nm range of electrical mobility diameters. Opacity readings of the exhaust gas are taken, cylinder pressure is indicated, a value for the combustion noise is computed; gaseous emissions are recorded and heat release rates based on cylinder pressure analysis are evaluated. Two full factorial experiments at 2 bar bmep 2000 rpm are run as 24 combinations of four factors: Injection pressure 400 and 1200 bar, with and without pilot injection, 1/3 and 1/4 mass-fraction exhaust gas recirculation, late, middle and early start of injection.
Technical Paper

Characterization of Diesel Particulate Emissions in Heavy-Duty DI-Diesel Engines with Common Rail Fuel Injection Influence of Injection Parameters and Fuel Composition

2001-09-24
2001-01-3573
The findings presented in this paper result from a collaboration between two Federal Laboratories in Switzerland. In this research project the characteristics of the particulates from internal combustion engines were investigated in detail. Measurements were carried out on a single-cylinder research engine focusing on exhaust particulate matter emissions. The single-cylinder diesel engine is supercharged and features a common-rail direct injection system. This work analyzes the influence of fuel properties and injection parameters on the particulate number size distribution. For the fuel composition, five different fuels including low sulfur diesel, zero-sulfur and zero-aromatics diesel, two blending portions of oxygenated diesel additive and rapeseedmethylester were used. For the injection parameters the injection pressure, the start of injection and the fuel amount in the pilot- and in the post-injection phases were varied.
Technical Paper

Influence of EGR on Combustion and Exhaust Emissions of Heavy Duty DI-Diesel Engines Equipped with Common-Rail Injection Systems

2001-09-24
2001-01-3497
At the Internal Combustion Engines and Combustion Laboratory of the Swiss Federal Institute of Technology in Zurich we are currently developing low emission strategies for heavy duty diesel engines that engine manufacturers can implement to meet stringent emissions regulations. The technologies being studied include high-pressure fuel injection (with common-rail injection system), multiple injection strategies (with pilot or post injections), turbo charging, exhaust gas recirculation (cooled EGR), oxygenated fuels and the optimization of the air management system. This paper focuses on the effects of exhaust gas recirculation (cooled EGR) in combination with very high injection pressure. Measurements were carried out on a heavy-duty diesel single-cylinder research engine equipped with a modern common rail fuel injection. The engine investigations were conducted in different operating points in the engine map covering wide speed and load ranges.
Technical Paper

Combustion Features and Emissions of a DI-Diesel Engine with Air Path Optimization and Common Rail Fuel Injection

1998-08-11
981931
Emission and performance parameters of a medium size, and medium speed D.I. diesel engine equipped with a Miller System, a new developed High Pressure Exhaust Gas Recirculation System (HPEGR), a Common Rail (CR) system and a Turbocharger with Variable Turbine Geometry (VTG) have been measured and compared to the standard engine. While power output, fuel consumption, soot and other emissions are kept constant, nitric oxide emissions could be reduced by 30 to 50% depending on load and for the optimal combination of methods. Heat release rate analysis provides the reasons for the optimised engine behaviour in terms of soot and NOx emissions: The variable Nozzle Turbocharger helps deliver more oxygen to the combustion process (less soot) and lower the peak gas temperature (less NOx).
Technical Paper

Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine

2012-04-16
2012-01-0825
The behavior of spray auto-ignition and combustion of a diesel spray in a lean premixed methane/air charge was investigated. A rapid compression expansion machine with a free-floating piston was employed to reach engine-relevant conditions at start of injection of the micro diesel pilot. The methane content in the lean ambient gas mixture was varied by injecting different amounts of methane directly into the combustion chamber, the ambient equivalence ratio for the methane content ranged from 0.0 (pure air) to 0.65. Two different nozzle tips with three and six orifices were employed. The amount of pilot fuel injected ranged between 0.8 and 1.8 percent of the total energy in the combustion chamber. Filtered OH chemiluminescence images of the combustion were taken with a UV-intensified high-speed camera through the optical access in the piston.
Journal Article

Knock in an Ethanol Fueled Spark Ignition Engine: Detection Methods with Cycle-Statistical Analysis and Predictions Using Different Auto-Ignition Models

2014-04-01
2014-01-1215
Knock is studied in a single cylinder direct injection spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed ethanol-air mixtures. At different speeds and intake temperatures spark angle sweeps have been performed at non-knocking conditions and varying knock intensities. Heat release rates and two zone temperatures are computed for both the mean and single cycle data. The in-cylinder pressure traces are analyzed during knocking combustion and have led to a definition of knocking conditions both for every single cycle as well as the mean engine cycle of a single operating point. The timing for the onset of knock as a function of degree crank angle and the mass fraction burned is determined using the “knocking” heat release and the pressure oscillations typical for knocking combustion.
X