Refine Your Search

Topic

Search Results

Journal Article

Spray Hot-impingement System Optimization for Premixed Diesel Homogeneous Charge Preparation

2008-04-14
2008-01-0014
In this study, a spray hot-impingement system was set up to analyze the spray characteristics when spray impinged onto a flat hot surface by high-speed photography technology. The angle between spray axis and normal line of the flat surface could be changed, and the surface temperature could exceed 400°C. The influences of surface temperature and heating power on spray atomization were investigated too. At atmospheric pressure, when the wall temperature was 340∼380°C, the impinging diesel spray was well atomized. In this experiment, the wall heating power could be set at 1∼25 Wcm-2. When the heating power was about 1.6 Wcm-2, the impinging spray atomized well, and when it was about 10.1 Wcm-2 the spray atomized better though the heating power requirement should be high.
Technical Paper

The Characteristic of Transient HC Emissions of the First Firing Cycle During Cold Start on an LPG SI Engine

2006-10-16
2006-01-3403
The first firing cycle is very important for cold-start. Misfire of the first firing cycle can lead to significant HC emissions and affect the subsequent cycles. The first firing cycle for Gasoline SI engine have been reported in many studies. Liquefied petroleum gas (LPG) as an alternative fuel has been widely used in commercial vehicles during the last decade. However, the properties of the first firing cycle for LPG SI engine have been seldom reported. This paper presents an investigation of the characteristics of transient HC emissions of the first firing cycle during cold start on a LPG SI engine. A fast-response flame ionization detector (FFID) was applied to measure transient HC emissions of the first firing cycle in the exhaust port of the engine. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded.
Journal Article

Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine

2018-04-03
2018-01-0894
The present work discusses a novel oxy-fuel combustion cycle utilized in compression ignition internal combustion engine. The most prominent feature of this cycle is that the air intake is replaced by oxygen; therefore nitric oxide (NOX) emission is eliminated. The enrichment of oxygen leads to higher flame speed and mass fraction consumption rate; on the other hand, the high concentration of oxygen presented during combustion will result in intense pressure rise rate which may cause severe damage to engine hardware. As water injection is already utilized in gasoline engine to control knocking, the utilization of water injection in optimizing oxy-fuel combustion process has been tested in this study. To understand the relationship between water injection strategy and cycle efficiency, computational fluid dynamics (CFD) simulations were carried out. The model was carefully calibrated with the experimental results; the errors were controlled within 3%.
Technical Paper

Effect of Piston Crevice on Transient HC Emissions of First Firing Cycle at Cold Start on LPG SI Engine

2007-10-29
2007-01-4015
By changing the top-land radial clearance, this paper presents the effect of the piston crevice on the transient HC emissions of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded. The results show that increasing 50% crevice volume leads to 25% increase of HC emissions in the lean region and 18% increase of HC emissions in the rich region, however, the 50% increase of crevice volume contributes to 32% decease of HC emissions in the stable combustion region. For LPG SI engine, the HC emissions of the first firing cycle during cold start are relatively low in a wide range of the excess air ratio.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine

2009-11-02
2009-01-2799
The effects of biodiesel on the swelling of the elastomers and plastics and the corrosion of metals are studied by the immersion tests. The results indicate that biodiesels make little corrosion effect on aluminum, steel and little swelling impact on plastics, but a significant corrosion may be taken place on cooper and brass for some sourced biodiesels. For nitrile-butadiene rubber, the variation of swelling properties in biodiesels is slightly higher than that in diesel. For the non-diesel-resistant elatomers, the variation of swelling properties is lower than those in diesel. The production process and biodiesel source have an influence on the result of elastomer swelling and corrosion. The relationship between the impact of biodiesel on materials and biodiesels properties are also discussed.
Technical Paper

Compatibility of Biodiesels and Their Blends with Typical Rubbers and Copperish Metals

2010-04-12
2010-01-0476
The swelling of ‘O’ rings of 3 typical rubbers (NBR, FKM, EPDM) and the corrosion of 2 typical copperish metal pieces (Copper, Brass) were investigated. The fuel samples included 14 kinds of biodiesels, 1 kind of diesel, and 4 kinds of blends respectively for 2 kinds of biodiesels. The changes in mass and size of ‘O’ rings were measured with an electronic balance and a vernier caliper. The surface corrosion of copperish metals was recorded with photos. It was found that the swelling of NBR in pure biodiesels were generally larger than those in diesel. The mass and size of FKM almost did not change in both pure biodiesels and diesel. The swelling of EPDM became less in pure biodiesels than that in diesel. When the blend ratios of biodiesels were less than 10%, the change rates in mass, inner diameter and section diameter of NBR, FKM and EPDM were similar between blended fuels and diesel.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Technical Paper

Spray Characteristics of Biodiesel and Diesel Fuels under High Injection Pressure with a Common Rail System

2010-10-25
2010-01-2268
Biodiesel has been paid more and more attention as a renewable fuel due to some excellent properties such as renewable, high cetane number, ultralow sulfur content, no aromatic hydrocarbon, high flash point, low CO2 emission when compared with diesel. While others physical properties like high viscosity, high surface tension, big density and bad volatility would spoil the spray characteristics of biodiesel fuel, which will affect the thermal efficiency when running in diesel engine. Accompanied with constant volume vessel and high speed video camera system, a high pressure common rail system, which could provide an injection pressure of 180 MPa, is used to investigate the characteristics of jatropha curcas biodiesel, palm oil biodiesel and diesel fuel. The effects of injection pressures and ambient densities on spray characteristics of these fuels are studied.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

2003-10-27
2003-01-3260
This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

Parametric Analysis of Ignition Circuit Components on Spark Discharge Characteristics

2016-04-05
2016-01-1011
The development of the present day spark ignition (SI) engines has imposed higher demands for on-board ignition systems. Proper design of the ignition system circuit is required to achieve certain spark performances. In this paper, the authors studied the relationship between spark discharge characteristics and different inductive spark ignition circuit parameters with the help of a simplified circuit model. The circuit model catches the principle behavior of the spark discharge process. Simulation results obtained from the model were compared with experimental data for model verification. Different circuit model parameters were then tuned to study the effect of those on spark discharge current and spark energy properties. The parameters studied include the ignition coil coupling coefficient, ignition coil primary and secondary inductances, secondary circuit series resistance and spark plug gap width.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

Knock and Pre-Ignition Detection Using Ion Current Signal on a Boosted Gasoline Engine

2017-03-28
2017-01-0792
In order to meet the ever more stringent demands on the CO2 emission reduction, downsized modern gasoline engine with highly boosted turbo charger meets new challenges such as super knock and pre-ignition, which will influence the engine combustion efficiency, smooth operation and even cause mechanical failure. A spark plug type ion current detection sensor was used in a 1.8L turbo charged gasoline engine. The ion-current wave signal differed greatly under different engine operating conditions such as without knock, with knock of different knock intensities. The frequency spectrum of ion-current was also studied, by the method of discrete Fourier transform (DFT). In knocking cycles, there were fluctuations of frequency 8-13 kHz both in the combustion pressure signal and in the ion current signal, proving the existence of knock information.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
X