Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Modeling Study of the Battery Pack for the Electric Conversion of a Commercial Vehicle

2021-09-05
2021-24-0112
Many aspects of battery electric vehicles are very challenging from the engineering point of view in terms of safety, weight, range, and drivability. Commercial vehicle engines are often subjected to high loads even at low speeds and this can lead to an intense increment of the battery pack temperature and stress of the cooling system. For these reasons the optimal design of the battery pack and the relative cooling system is essential. The present study deals with the challenge of designing a battery pack that satisfies both the conditions of lowest weight and efficient temperature control. The trade-off between the battery pack size and the electrical stress on the cells is considered. The electric system has the aim to substitute a 3.0 liters compression ignition engine mainly for commercial vehicles.
Technical Paper

Infrared Diagnostics of a Li-Polymer Battery for the Estimation of the Surface Temperature Distribution and the Heat Transfer Parameters

2020-09-15
2020-01-2026
A growing number of electric vehicles (EV) and hybrid electric vehicles (HEV) in the present market depicts the rapid growing demand for energy storage systems. The battery’s main peculiarities must be the power density and reliability over time. The temperature strongly affects battery performance for low and high intensity. In particular, the management of the heat generated by the battery itself is one of the main aspects to handle to preserve the performance over time. The objective of this paper is to compare the surface temperature of the lithium-ion polymer battery at different discharging rates by infrared thermography. Thermal imaging is performed to detect the battery surface temperature distribution, focusing on its variation over time and the local inhomogeneity. Temperature measurements are then used to estimate the contributions of the different heat transfer mechanisms for the dissipation of the heat generated by the battery.
Technical Paper

Thermal Imaging of a Li-Ion Battery for the Estimation of the Thermal Parameters and Instantaneous Heat Dissipated

2020-09-27
2020-24-0014
The electrochemical performance of a lithium-ion battery is strongly affected by the temperature. During charge and discharge cycles, batteries are subjected to an increment of temperature that can accelerate aging and loss of efficiency if critical values are reached. Knowing the thermal parameters that affect the heat exchange between the battery surface and the surrounding environment (air, cooling fins, plates, etc…) is fundamental to their thermal management. In this work, thermal imaging is applied to a laminated lithium-polymers battery as a non-invasive temperature-indication method. Measurements are taken during the discharge phase and the following cooling down until the battery reaches the ambient temperature. The 2d images are used to analyze the homogeneity of the temperature distribution on the battery surface. Then, experimental results are coupled with mathematical correlations.
Technical Paper

Characterization of Combustion and Emissions of a Propane-Diesel Blend in a Research Diesel Engine

2016-04-05
2016-01-0810
The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
Technical Paper

Chemical and Spectroscopic Characterization of SOF and Soot from a Euro-4 Diesel Engine Fueled by Model Fuels

2011-08-30
2011-01-2098
This work regards the study of the effect of the fuel properties on the diesel engine emissions of particulate separated in soluble organic fraction (SOF) and soot. A Euro-4 engine was used operating at two engine conditions: 1500 rpm speed − 8% of maximum load and 2300 rpm − 13%. Model hydrocarbon fuels containing 100% of n-alkanes and iso-alkanes were used for studying the effect of cetane number. The effect of fuel composition on soot and SOF emissions was studied at a fixed cetane number (52) by using six fuels formulated with 90 vol% of model alkanes and iso-alkanes and 10 vol% of different components as alkylbenzenes, naphthenes (decaline), diaromatics (methylnaphthalene), fatty acid methyl esters (FAME) and highly paraffinic refinery streams (Fischer-Tropsch GtL and high-pressure Hydro cracking).
Technical Paper

Combustion Behaviour and Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in a Light-Duty Diesel Engine

2012-04-16
2012-01-1053
The combustion behaviour, the mechanisms of soot formation, and the emission performance of a mixture of polyoxymethylene dimethyl ethers (POMDME) oligomers with a number of oxymethylene units ranging from 3 to 5, both neat and blended at 12.5% and 50% levels with commercial diesel fuel have been investigated. The goals were a first evaluation of the POMDME impact on the diesel injector behaviour, on the combustion process as well as on the emission performance of a light duty engine. Then a brief screening on the capability to improve the NOx-PM trade-off using POMDME by means of the exhaust gas recirculation (EGR) rate increment was also assessed.
Technical Paper

Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in an Old Light-Duty Diesel Car

2013-04-08
2013-01-1035
Polyoxymethylene dimethyl ether (POMDME) is a new alternative fuel that can be produced from waste biomasses and tailored through the distribution of oligomers to fit into the distillation range of diesel fuel. Since one potential advantage of alternative fuels is that they could reduce emissions also from old in-use vehicles without waiting for their replacement, we have measured and evaluated the emission performance of neat POMDME and a blend of 10% POMDME and 90% commercial diesel fuel in an old Euro-2 diesel car over the NEDC driving cycle. As compared to the reference diesel fuel, the experimental results show a significant reduction in PM emissions already with the 10% blend, i.e., −18%, and even more pronounced with the neat POMDME, i.e., −77%. With this latter the PM emission reached below the Euro 4 limit. The composition of PM was quite different for the two extreme fuels; being mostly VOF from lube oil for the neat POMDME, while mostly soot in the case of diesel fuel.
Technical Paper

Model-Supported Design of a Range-Extended Electric Vehicle with a Hydrogen-Fueled Internal Combustion Engine

2022-09-16
2022-24-0008
Hybrid electric vehicles are a suitable solution for the transition from fossil fuels-based transportation to electric mobility. They have the benefits of zero-emissions operation when only the electric engine is used preventing the typical range anxiety of full-electric vehicles. Also, they can have a low battery pack capacity and weight thanks to the continuous recharge from the internal combustion engine that becomes the only responsible for exhaust emissions. A practical solution to limit the combustion engine emissions is represented by the range extender configuration, where the engine works at a fixed operating point with the highest efficiency serving uniquely as a battery charger. In the face of the current world situation and future changes, research for alternative energy sources is crucial. Hydrogen can be used as an alternative fuel for common internal combustion engines; moreover, it has the great advantage of high efficiency (about 44%).
Technical Paper

Measurements and Modeling of the Temperature of a Li-polymer Battery Provided with Different Coatings for Heat Dissipation

2022-06-14
2022-37-0013
The battery efficiency is strongly affected by the operating temperature, granting the best performance in a limited range. Great attention is given to the design and the testing of materials for the battery heat dissipation. In the present study, the thermal behavior of a Li-polymer cell, which is part of a battery pack for electric vehicles, is investigated. The cell is provided with different coatings of carbon, graphene, and silicone, used in turn, to dissipate the heat generated during the operation in natural convection. The coating is placed only on one side of the battery while the other one is inspected via thermal imaging. Optical diagnostics in the infrared band are used to evaluate the bi-dimensional distribution of the battery surface temperature and the effect of the coatings. Different operating conditions are tested by varying the current demand.
Technical Paper

Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars

2018-09-10
2018-01-1819
In Europe, the development and implementation of new regulatory test procedures including the chassis dynamometer (CD) based World Harmonised Light Duty Test Procedure (WLTP) and the Real Driving Emissions (RDE) procedure, has been driven by the close scrutiny that real driving emissions and fuel consumption from passenger cars have come under in recent times. This is due to a divergence between stated certification performance and measured on-road performance, and has been most pointed in the case of NOx (oxides of nitrogen) emissions from diesel cars. The RDE test is certainly more relevant than CD test cycles, but currently certification RDE cycles will not necessarily include the most extreme low speed congested or low temperature conditions which are likely to be more challenging for NOx after-treatment systems.
Technical Paper

Hydrocracked Fossil Oil and Hydrotreated Vegetable Oil (HVO) Effects on Combustion and Emissions Performance of “Torque-Controlled” Diesel Engines

2015-09-06
2015-24-2497
The present paper describes the results of a research activity aimed at studying the potential offered by the use of Hydrocracked fossil oil (HCK) and Hydrotreated Vegetable Oil (HVO) blends as premium fuels for next generation diesel engines. Five fuels have been tested in a light duty four cylinder diesel engine, Euro 5 version, equipped with closed loop control of the combustion. The set of fuels comprises four experimental fuels specifically formulated by blending high cetane HVO and HCK streams and oneEN590-compliant commercial diesel fuel representative of the current market fuel quality. A well consolidated procedure has been carried out to estimate, for the tested fuels, the New European Driving Cycle (NEDC) vehicle performance by means of the specific emissions at steady-state engine operating points.
Technical Paper

Investigation of the Injection Process in a Research CR Diesel Engine using Different Blends of Propane-Diesel Fuel

2015-09-06
2015-24-2477
Blends of propane-diesel fuel can be used in direct injection diesel engines to improve the air-fuel mixing and the premixed combustion phase, and to reduce pollutant emissions. The potential benefits of usinf propane in diesel engines are both environmental and economic; furthermore, its use does not require changes to the compression ratio of conventional diesel engines. The present paper describes an experimental investigation of the injection process for different liquid preformed blends of propane-diesel fuel in an optically accessible Common Rail diesel engine. Slight modifications of the injection system were required in order to operate with a blend of propane-diesel fuel. Pure diesel fuel and two propane-diesel mixtures at different mass ratios were tested (20% and 40% in mass of propane named P20 and P40). First, injection in air at ambient temperature and atmospheric pressure were performed to verify the functionality of the modified Common Rail injection system.
Technical Paper

Combustion and Emission Characteristics of a Diesel Engine Fuelled with Diesel-LPG Blends

2019-09-09
2019-24-0038
Recently, it has been worth pointing out the relevance of alternative fuels in the improvement of air quality conditions and in the mitigation of global warming. In order to deal with these demands, in recent studies, it has been considered a great variety of alternative fuels. It goes without saying that the alternative fuels industry needs the best of the efficiency with a moderate layout. From this perspective, Liquefied Petroleum Gas (LPG) could represent a valid option, although it is not a renewable fuel. In terms of polluting emissions, the LPG can reduce nitrous oxides and smoke concentrations in the air, a capability that has a relevant importance for the modern pollution legislation. LPG is well known as an alternative fuel for Spark Ignition (SI) engines and, more recently, LPG systems have also been introduced in the Compression Ignition (CI) engines in dual-fuel configuration.
Technical Paper

Effect of POMDME Blend on PAH Emissions and Particulate Size Distribution from an In-Use Light-Duty Diesel Engine

2014-04-01
2014-01-1951
Polyoxymethylene dimethyl ether (POMDME) is a synthetic fuel from alternative energy sources, which can be blended in any ratio with petroleum diesel fuel. The regulated and non-regulated emissions, especially polyaromatic hydrocarbons (PAH) and particle number size distribution (PNSD), from an old Euro-3 diesel engine fueled with a 7,5% blend of POMDME in commercial diesel fuel were measured and compared to the base diesel fuel, after adjusting exhaust gas ratio (EGR) in order to match the level of NOx emission. The experimental results show a significant reduction in soot and particulate matter (PM) emissions. The number of particles smaller than 30 nm is slightly increased at low speed and low load operating conditions, while at high speed the number concentration of particles larger than 30 nm is reduced. The PAH emissions were found higher for the oxygenated fuel blend than for the base fuel.
Technical Paper

Investigation of the Effect of Compression Ratio on the Combustion Behavior and Emission Performance of HVO Blended Diesel Fuels in a Single-Cylinder Light-Duty Diesel Engine

2015-04-14
2015-01-0898
Hydrotreated vegetable oil (HVO) is a renewable high quality paraffinic diesel that can be obtained by the hydrotreating of a wide range of biomass feedstocks, including vegetable oils, animal fats, waste oils, greases and algal oils. HVO can be used as a drop-in fuel with beneficial effects for the engine and the environment. The main objective of this study was to explore the potential of HVO as a candidate bio blendstock for new experimental formulations of diesel fuel to be used in advanced combustion systems at different compression ratios and at high EGR rates in order to conform to the Euro 6 NOx emission standard. The experiments were carried out in a single-cylinder research engine at three steady-state operating conditions and at three compression ratios (CR) by changing the piston.
Technical Paper

Driving Style Effects on Road EV Battery Performance and Remaining Useful Life

2023-08-28
2023-24-0169
The aim of this paper is to analyze the effects of different driving styles and patterns onboard battery packs (BPs) supplying electric vehicles. The analysis is carried out by using real urban driving cycles, acquired through vehicle On Board Diagnostic Port (OBDP), and a Matlab-Simulink scaled BP model, in which lithium BP has been parametrized and validated through specific experimental tests. The results have been mainly focused on the evaluations of BP State of Health (SoH) and capacity fading decreasing during its lifetime at several critical conditions. In particular, these evaluations have allowed critical driving and environmental operative conditions to be identified and highlighted. The obtained results provide useful information for both producers of Battery Electric Vehicle (BEV) Energy Storage Systems (ESS) in the design stage, and for artificial intelligence driver support systems, mainly focused on extending overall vehicle life.
Technical Paper

Advantages of 3d and 1d Modeling a Li-Po Battery for the Prediction of Overheating under Real Driving Conditions

2023-08-28
2023-24-0167
1d multi-domain modeling is a powerful tool for the fast prototyping of battery packs for electric vehicles. It can help identify the optimal layout for structural and thermal aspects and then support the battery sizing process. On the other hand, its simplicity may fail whereas precise simulations are needed. For example, a catastrophic event such as the thermal runaway can be triggered by a local peak of temperature on a single cell of the battery pack and then spread to the others. For this reason, the surface temperature distribution of a battery is crucial, and 1d models provide only an average value. Conversely, 3d models can provide this information even if at higher costs, in terms of time and computational efforts. 3d models of a Li-Po battery are not common in the literature because of the high complexity of the internal structure of a cell and the availability of experimental data for validation.
Technical Paper

Experimental Investigation on Thermal Effects of a Metal Foam-based Frame Application for Lithium-Ion Cells

2023-08-28
2023-24-0168
The use of electric propulsion systems for road vehicle applications is widely recognized as one of the most feasible solutions for sustainable mobility. On the other hand, improvement, and optimization of battery technologies remain challenging technical bottlenecks to be addressed. In particular, the design of proper packaging and heat dissipation structures can greatly support obtaining robust, high energy and power density battery packs. In this regard, this paper presents an experimental analysis of a metal foam-based frame used for the support and cooling of a small battery pack composed of 18650 cylindrical cells. The considered frame is manufactured in Al 6082 alloy according to the lost-PLA replication method. With a double extruder 3D printer it is possible to make polymer-based samples of the lost model. Through CAD modeling, different geometries can be replicated in order to get PLA samples.
Technical Paper

Numerical Modelling and Experimental Validation of the Thermal Behavior of Li-ion Batteries for EVs Applications

2023-08-28
2023-24-0153
In this work, a dynamic 0-D electro-thermal model of a lithium-polymer battery for automotive applications is presented. The model predicts the battery temperature during its charging/discharging phases under different environmental and operating conditions, by considering the requested power or current, the coolant flow rate and its temperature as model inputs. The model was first validated with experimental data carried out at the test bench where only the convective heat transfer between the battery and the ambient air was considered. The accuracy of the internal heat generation model was experimentally assessed for different current discharge rates. Then, a liquid cooling system was designed on purpose, assembled, and installed on the battery at the test bench for the improvement of the model predictions in liquid convection conditions.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
X