Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Lunar Portable Life Support System Heat Rejection Study

2009-07-12
2009-01-2408
Performing extravehicular activity at various locations on the lunar surface presents thermal challenges that exceed those that have been experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the spacesuit (SS) and reject heat loads that are generated by both the crew member and the PLSS equipment. The amount of cooling that will be required varies based on lunar location and terrain due to the heat that is transferred between the suit and its surroundings, A study, which assumes three different thermal technology categories, has been completed that studied the resources that are required to provide cooling under various lunar conditions as follows: 1. SS water membrane evaporator 2. Sub-cooled phase change material (SPCM) 3.
Technical Paper

Advanced Design Heat Pump/Radiator for EVA Suits

2009-07-12
2009-01-2406
Absorption cooling using a lithium chloride/water heat pump can enable lightweight and effective thermal control for Extravehicular Activity (EVA) suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member, This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment, Data from tests of the system's modular components have validated the design models and allowed predictions of the size and weight of a complete system.
Technical Paper

Development of a Prototype Water Pump for Future Space Suit Applications

2009-07-12
2009-01-2450
NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories.
Technical Paper

Testing of Commercial Hollow Fiber Membranes for Spacesuit Water Membrane Evaporator

2009-07-12
2009-01-2427
Three commercial off-the-shelf hollow fiber membrane evaporators, which were modified for low pressure, were tested as potential spacesuit water membrane evaporator (SWME) heat rejection technologies at pressures below 33 pascals in a vacuum chamber. Water quality was controlled in a series of 25 tests, first by simulating potable water that was reclaimed from wastewater and then by changing periodically to simulate the ever-concentrating make-up of the circulating coolant over that which is predicted over the course of 100 extravehicular activities. Two of the systems, which are comprised of nonporous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by increasing concentrations of cations in the water. One of the systems, which was based on hydrophobic porous polypropylene tubes, was not affected by the degrading water quality or the presence of microbes. The polypropylene system, the SWME 1, was selected for further testing.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Thermal Performance of the Radiator Advanced Demonstrator

1998-07-13
981672
Space suits for advanced missions have baselined radiators as the primary means of heat rejection in order to minimize consumables and logistics requirements. While radiators have been used in the active thermal control system for spacecraft since Gemini, the use of radiators in spacesuits introduces many unique requirements. These include the ability to reduce the amount of heat rejection when overcooling or overheating of the crew member is a concern. Overcooling can occur with low metabolic rates, cold environments or a combination of the two, and overheating can occur with high metabolic rates in a warm environment. The main goal of the Radiator Advanced Demonstrator (RAD) program is to build and fly a radiator on the current Extravehicular Mobility Unit (EMU) in order to verify thermal performance capabilities in actual flight conditions. The RAD incorporates an aluminum plate separated from the primary water panel with a silicone gasket.
Technical Paper

Freeze Tolerant Radiator for Advanced EMU

2004-07-19
2004-01-2263
The current Extravehicular Mobility Unit (EMU) system provides thermal control using a sublimator to reject both the heat produced by the astronaut's metabolic activity as well as the heat produced by the Portable Life Support Unit (PLSS). This sublimator vents up to eight pounds of water each Extravehicular Activity (EVA). If this load could be radiated to space, the amount of water that would need to be sublimated could be greatly reduced. There is enough surface area on the EMU that almost all of the heat can be rejected by radiation. Radiators, however, reject heat at a relatively constant rate, while the astronaut generates heat at a variable rate. To accommodate this variable heat load, NASA is developing a new freeze tolerant radiator where the tubes can selectively freeze to “turn down” the radiator and adjust to the heat rejection requirement. This radiator design significantly reduces the amount of expendable water needed for the sublimator.
Technical Paper

Performance Testing of an Advanced Lightweight Freezable Radiator

2006-07-17
2006-01-2232
During extravehicular activities (EVAs) it is crucial to keep the astronaut comfortable. Currently, a sublimator rejects to space both the astronaut's metabolic heat and that produced by the Portable Life Support System. In doing so, it consumes up to 3.6 kg (8 lbm) of water; the single largest expendable during an eight-hour EVA. While acceptable for low earth orbit, resupply for moon and interplanetary missions will be too costly. Fortunately, the amount of water consumed can be greatly reduced if most of the heat load is radiated to space. However, the radiator must reject heat at the same rate that it is generated to prevent heat stroke or frostbite. Herein, we report on a freezable radiator and heat exchanger to proportionally control the heat rejection rate.
X