Refine Your Search


Search Results

Technical Paper

New Developments in Fuel Injector Atomizer Layouts for Port Fuel Injection Applications to Meet PL6 and ULEV Requirements

The paper presents the background research on the physics of the droplet coalescence phenomena carried out by an interactive usage of high-level 3-D numerical simulation tools and high-level optical visualization and measurement techniques. The presentation continues with the description of a new injector atomizer plate layout, which enables a physical coalescence control of the droplet population within the entire fuel spray. Finally are presented examples of the impact on exhaust emissions of the introduction the new atomizer plate with coalescence control by engine test bed experiments (steady state low load conditions) and vehicle tests (first cold part of the FTP-cycle).
Technical Paper

Streamline Visualisation by Laser Sheet Imaging - A Useful Complementary Optimisation Tool for Intake Manifold Design

The paper describes the application of laser sheet flow visualisation with numerical image analysis as a useful complementary tool to numerical simulation techniques for the optimisation of fluid dynamics within SI-engine in-take systems. The lay-out of the laser sheet visualisation system and the applied numerical image analysis are discussed in detail. Two applicative examples are given, one of smoke induced visualisation of the internal gas flow of an intake manifold, the other of natural visualisation of fuel injector wall film deposit in the intake runner. Finally is concluded that the addition of visualisation techniques to the development strategy allows a time gain, because it contributes to a rapid understanding of complex flow phenomena.
Technical Paper

Introduction of Virtual Spray Vessel (VSV) simulation approach to improve the optimization level of mass-produced 3rd generation fuel injectors for SFS-Flex fuel systems.

The success obtained by use of Virtual Engine Modeling (VEM) in the design and development areas of fuel injectors generated a lot of interest from production and quality engineers to dispose of a similar tool related to spray vessel measurements. To respond to stringent PL6/EURO5 requirements it was decided to develop a Virtual Spray Vessel (VSV) tool capable of predicting spray patters and perform droplet diameter analysis comparable to Phase Doppler Analysis (PDA) results. The paper describes the analogies between VEM and VSV modeling, the specific new numerical approaches to obtain spatial spray data comparable to conventional mechanical measurement techniques and to perform droplet diameter analysis comparable to PDA data. The paper concludes with a series of comparisons of simulated and experimental data.
Technical Paper

Presentation of the Development of a Downsized, Turbocharged Prototype Engine and the Optimization of the Layout of its PFI Mixture Preparation System

The paper describes the setup of a 4-cylinder 1.4-liter prototype Spark Ignited (SI)-engine, which is highly boosted, extremely downsized and port fuel injected. During experimental data gathering with the engine it was discovered that the originally mounted fuel injectors were non-optimized an unable to produce an expected low fuel consumption performance at low speed, low load engine working conditions. To solve this problem by finding an optimized alternative solution for the mixture preparation process it was decided to use a high-performance numerical simulation tool. The paper presents the overall layout of the prototype engine as well as the structure of the 3-D dynamic optimization tool used to address the mixture preparation problem. The paper continues with a detailed description of the different steps used to reach the complete optimization of the mixture preparation system (both the fuel injectors and the intake manifold).
Technical Paper

Parametric Study of Physical Requirements for Successful Use of a Homogenous Charge Compression Ignition (HCCI) Approach in a Direct Injected Gasoline Engine

The present paper is a contribution in which is used a numerical simulation approach, the Virtual Engine Model, to study the combination of the Compression Ignition process with a Gasoline Direct Injection mixture preparation in a limited number of load-points. The first part of the paper describes the reasons for which current Gasoline Direct Injection engine technology must be combined with other technologies related to the in-cylinder mixture preparation control to further increase their potential for decreased fuel consumption. The paper continues with a description of the physics of spark and compression ignited processes as well as of the involved mixture preparation hardware components. The setup and the practical use of the Virtual Engine Model are discussed for both spark and compression ignited approaches.
Technical Paper

Parametric Study of Physical Requirements for Optimization of the EGR-rate and the Spray Formation for Minimum Emissions Production Over a Broad Range of Load/Speed Conditions

The present paper describes a study, which can enable a small displacement (1.3 liter) turbocharged European CR-diesel engine to tolerate an important increase in EGR-level. The analysis is performed by use of a 3D virtual numerical engine model, which isolates the main parameters that must be optimized within the perimeter of the combustion chamber. The paper gives a short introduction to the physical background for NOx and soot-formation as well as a recall of the main issues related to the simulation models used in the virtual engine simulation. The analysis is performed in a 9 points load/speed test matrix. Several EGR-rates are studied as well as the impact of a precise temperature control of the exhaust gas re-introduced in the intake manifold. The paper concludes by an analysis of the cumulated impact on the EGR-level tolerated by the engine after the introduction of the suggested optimization measures.
Technical Paper

Consequences of Atomization Improvement of Port Injectors by Air-Shrouding - Theory and Industrial Solution

In order to improve the atomization capability of a standard port fuel injector, an optimized suggestion for an air shrouded injector is presented. The fluid dynamic part of the retained solution is composed of a special flat seat design for the fuel metering function combined with a post atomization adapter enabling both mono- and multi-spray modes. The concept works equally well in natural manifold gradient mode and with an external pressure pump. The realized concept is tested in both free jet experiments and on two different 2 litre engines, one operated in stoechiometric conditions the other in lean-burn conditions. The experimental work confirms a potential of the concept to increase torque stability and thereby lean-burn limits, decrease required spark advance and enable open inlet valve injection and consequently decrease wall wetting phenomena.
Technical Paper

Experimental and Numerical Study of Spray Generated by a High Pressure Gasoline Swirl Injector

Experimental measurements and numerical computations were made to characterize a spray generated by a high-pressure swirl injector. The Phase Doppler technique was applied to get information on droplet sizes (d10) and axial velocities at defined distances from the injector tip. Global spray visualization was also made. Computations were carried out using a modified version of KIVA 3V. In particular, the break-up length of the sheet and its dimension were computed from a semi-empirical correlation related to the wave instability theory suggested by Dombrowski, including the modifications introduced by Han and Reitz. Two different approaches were used to describe the initial spray conditions. According to the first, discrete particles with a characteristic size equal to the thickness of the sheet are injected. The second approach assumes, that the particles having a SMD computed by a semi-empirical correlation are injected according to a statistical distribution.
Technical Paper

Study of the Benefits and Drawbacks of a Substantial Increase of Rail-Pressure in GDI-Injector Assemblies

In the present paper are examined the consequences of a substantial rise in the injection pressure for Gasoline Direct Injection (GDI) injector assemblies. The paper presents a comparative study of the spray behavior of two different injector nozzle layouts submitted to current 10 Mpa rail-pressure as well as to a 30 Mpa injection pressure. To evaluate the differences in the fundamental physical spray parameters are used several specially developed optical visualization techniques, which enable phase-Doppler, PIV, Laser-sheet and high-speed recordings of dense high pressure fuel sprays. A recently developed injector actuator and the necessary modifications to existing high-pressure pumps to reach a 30 MPa pressure level in the fuel system are presented. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the rail-pressure rise is examined.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Improvements of GDI-Injector Optimization Tools for Enhanced SI-Engine Combustion Chamber Layout

The suggestions for upcoming Euro 2000 clean air act puts an increasing legislative pressure for lower specific fuel consumption in order to reduce the emission of CO2 and thereby decrease the impact of the “green house” effect. One of the possible suggestions to meet these requirements for SI-engines is the gasoline direct injected (GDI) power unit. One of the key points of the success of a layout of a GDI system is the optimization of the fuel injector and combustion chamber charge formation parameters. A brief description of the basic GDI-system used during the study is given. Hereafter are outlined the computational and experimental optimization tools which have been used to produce, on a reasonable industrial time scale, the main indications to optimize the design of a given injector/chamber configuration. The paper discusses in detail the results produced by the latest enhancements introduced into the 3D multi-phase computational approach, NCF-3D.
Technical Paper

Presentation of the new third Generation “Green” injector Family, PICO-ECOlogical, developed for further Improvement of Flex-fuel Engine Performance.

The paper presents a description of the development phases of the new third generation of “green” fuel injectors. The development objective for the new PICO-ECOlogical injector was to define a layout, which enables an optimal parameter configuration for both the mixture preparation (high flexibility to adapt different atomizer plate structures) and the manufacturing processes. It is demonstrated in which way the use of high-level numerical simulation and visualization techniques have become an integrated part of the development process. A detailed description is given of the new layout with respect to earlier versions and the advantageous new features obtained are discussed. Test results obtained by the new 3rd-generation injector layout are presented. The impact of the improved dynamic response capability is explained and experimental data at both engine test rig and vehicle FTP-cycle conditions are reported and discussed.
Technical Paper

The Integral Flex-Vehicle Mixture Control of Alcohol-Based Bio-Fuels - A New Challenge for Fuel-Atomizer Optimization

The paper presents the main reasons for the increasing market share of vehicles with the capacity to run on random bio fuel blends. It describes the philosophy and basic layout of current integral flex mixture preparation systems. The paper demonstrates the necessity to introduce a series of new high-performance analysis tools for further improvement of the mixture preparation system and in particular the fuel injector performance. The paper continues with a discussion of the basic structure of the interactive Virtual Engine Model approach applied to fuel injector atomizer optimization. Test results obtained by application of the new tools to two different series production flex engines are presented. The impact of the improved spray formation capability of the optimized fuel injector atomizers is explained and experimental vehicle FTP-cycle data are reported and discussed.
Technical Paper

Developments in the Use of Multi-Purpose Numerical Simulation Tools to Optimize Combustion Control Parameters for the 2nd Generation of Lean Burn Stratified GDI Engines

The first part of the paper gives an overview of the current results obtained with the first-generation of GDI-powered vehicles launched on the European market. In view of the rather limited success in fuel consumption gain the second-generation of very lean stratified layouts has begun, but this process requires the development and application of new high-level analysis tools. A possible high performance approach is the multi-purpose use of 3-D numerical simulation both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project was chosen to demonstrate the dual application capability of the NCF-3D simulation tool. The paper continues with a description of the engine application frame, the basic features of the NCF-3D simulation tool and the latest enhancements made to combustion and fuel composition models within the software frame.
Technical Paper

Minimization of Particulate Raw Emissions from CR-Diesel Engines - A Key-Element to Limit the Increase in Complexity of Exhaust Gas After-Treatment

The present paper describes a study of the basic parameters, which govern particulate (soot) formation within the combustion chamber of a small displacement (1.3 liter) turbocharged European CR-diesel engine. The main tools used for the study are a real fired engine, a numerical virtual engine and a special high ambient pressure vessel for injector spray visualization. The paper describes an improved soot formation model implemented in the virtual engine setup. A comparison is presented between measured and computed combustion data at 8 different load points. The paper concludes with a discussion of the means, which can be used to minimize the particulate matter formation in the design phase of both the combustion layout and the fuel injector atomizer as well as in the design of the injection control strategies.
Technical Paper

Reduction of Spray Momentum for GDI High-Pressure Injectors - A Necessary Step to Accomplish Series Production of Super-Charged DI-Engines

The first part of the present paper describes the means by which the spray momentum can be decreased. The objective can be obtained either by injector-internal geometrical design changes, which very often lead to a highly non-uniform spray density/droplet distribution or by a new injector-external process, called the colliding jet (CJ) approach. The paper continues with a detailed description of the physics of the controlled secondary breakup process provided by the CJ-approach, which enables a very uniform density/droplet distribution on the downstream side of the collision zone as well as an approximately 40 % decrease in spray penetration depth. The knowledge of the physics of the CJ-approach enables the introduction of a new spray model in the 3-D numerical simulation code NCF-3D.
Technical Paper

Study of the Impact on the Combustion Process of Injector Nozzle Layout creating Enhanced Secondary Spray Break-up

The paper presents a study of a key-element in the mixture preparation process. A typical common-rail (CR) high-pressure fuel injector was fitted with a prototype injector nozzle with atomizer bores of a particular conical layout. It is demonstrated within certain layout limits, that a considerable enhancement can be obtained for the secondary break-up of the hard-core fluid sprays produced by the nozzle. The impact on the combustion process is examined in terms of pressure and heat release as well as of the engine-out pollutant emission. The results are compared to those of an earlier developed CR high-pressure injector nozzle. The atomization behavior of the prototype nozzle is illustrated through experimental results in terms of engine-out emissions from a 1.3-liter turbo-charged passenger car diesel engine. The detailed spray behavior is visualized on a component test rig by use of specially developed optical visualization techniques.
Technical Paper

DGI - Direct Gasoline Injection Status of Development for Spark-Ignited Engines

The first part of the paper gives an overview of the results obtained with European GDI-powered vehicles launched on the market. Thereafter, a discussion of in-vehicle limitations due to the exhaust gas after-treatment system requirements is given. The paper continues with a description of the current development status of European lean stratified direct injection system layouts. A detailed presentation is made of the mixture preparation system key components, basic control algorithms and the necessary new high-level experimental and analytical development tools. Particularly the topic of the multi-purpose use of 3-D numerical simulation is addressed both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project is taken as example to demonstrate the dual application capability of the 3D simulation tool.
Technical Paper

Mixture Preparation Optimization by CFD of a Flex-Vehicle (Gasoline/Ethanol) Intake System Layout

The paper describes the optimization to match the Brazilian market requirements for a Flex-Vehicle of the intake system and in particular the fuel injectors of a small displacement (1.6 l) 8 valves passenger car engine. The imposed target was to find a compromise for the hardware components related to the mixture preparation process, which optimize their performance with respect to a gasoline with a random content (from 0 to 100 %) of ethanol. The analytical optimization process is performed by use of a 3-D numerical virtual engine in which can be studied the physical phenomena of spray atomization, vaporization and momentum fluctuations from different injector atomizer layouts. The different atomizer layouts as well as several vaporization enhancement approaches are rated with respect to a baseline configuration on the virtual engine. The paper presents the results obtained by highest rated solutions, which were manufactured as prototypes and tested on the real engine.
Technical Paper

Description of preliminary Study for Technology Transfer of an Ethanol Mixture Preparation System from Automotive Application to a 4-Cylinder 5.9 liter Aircraft Engine.

On the basis of the large amount of know-how accumulated in the field of automotive ethanol SI-engine fuelling in Brazil, it seemed appropriate to continue and set a new milestone in the usage of ethanol fuel. The paper presents the preliminary study made to enable the transfer of the ethanol technology to a 5.9-liter 4-cylinder boxer aircraft engine. The study describes the steps made to define the optimal parameter configuration for the transfer of the fuel system packaging, the fuel injector layout, the engine control unit (ECU) and the legislative redundancy requirements for aviation applications. The paper illustrates the use of numerical simulation techniques and special visualization approaches necessary to understand the physical phenomena of mixture preparation (spray atomization and momentum). Two different layouts are presented and discussed and a certain number of experimental results obtained with the retained solution are presented and discussed.